Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

Cinzia Buratti, Andrea Nicolini, Stefano Ortica

Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a combustione interna a due tempi

Settembre 2001

CRIAF
Centro Interuniversitario di Ricerca sull’Inquinamento da Agenti Fisici
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi
INDICE

Autori.. pag. 7
Riassunto .. pag. 9
Abstract.. pag. 10
Introduzione.. pag. 11

1. Modelli acustici di propagazione del rumore nei condotti di scarico dei motori a combustione interna a 2 tempi.. pag. 13
 1.1 Il motore a 2 tempi... pag. 13
 1.2 Modalità di generazione del rumore.. pag. 15
 1.3 Propagazione acustica nel condotto di scarico................. pag. 18
 1.4 Il rumore del go-kart... pag. 23
 1.4.1 Modalità di misura.. pag. 23
 1.4.2 Caratteristiche del rumore.. pag. 25
 1.5 Il banco di prova... pag. 27
 1.6 Funzionamento del banco di prova...................................... pag. 32
 1.7 Caratterizzazione acustica del banco di prova............... pag. 35
2. Progetto e costruzione della marmitta elettronica.................. pag. 39
 2.1 La marmitta elettronica... pag. 39
 2.2 Caratteristiche meccaniche.. pag. 41
 2.3 Caratteristiche acustiche.. pag. 46
2.3.1 Gli altoparlanti... pag. 52
2.4 Funzione di trasferimento della marmitta elettronica...... pag. 53
3. Unità di controllo ed algoritmi di calcolo.......................... pag. 55
 3.1 L’unità di controllo... pag. 55
 3.2 Apparato sperimentale.. pag. 56
 3.3 Algoritmi di controllo... pag. 63
 3.3.1 Algoritmo LMS... pag. 64
 3.3.2 Algoritmo FxLMS... pag. 66
 3.3.3 Algoritmo RLS... pag. 70
 3.4 Sistema di sviluppo ... pag. 72
 3.5 Listati dei programmi... pag. 73
 3.5.1 Algoritmo LMS... pag. 73
 3.5.2 Algoritmo FxLMS... pag. 78
 3.5.3 Algoritmo RLS... pag. 85
4. Messa a punto sul banco di prova e verifiche sperimentali...... pag. 91
 4.1 Verifiche sperimentali... pag. 91
 4.2 Strumentazione fonometrica.. pag. 91
 4.3 Modalità di misura... pag. 92
 4.4 Prima serie di misure... pag. 93
 4.5 Seconda serie di misure.. pag. 103
5. Verifiche sperimentali sul prototipo di marmitta elettronica ed ottimizzazioni.. pag. 105
 5.1 Ottimizzazioni: modifiche sul prototipo di marmitta elettronica per motore a due tempi... pag. 105
5.2 Verifiche sperimentali sul prototipo di marmitta
elettronica applicata al condotto di scarico di un
comune motociclo ... pag. 107
5.3 Modalità di misura... pag. 109
5.4 Misure fonometriche .. pag. 111
5.5 Commenti ai risultati delle misure fonometriche pag. 126

Conclusioni ... pag. 129
Elenco dei simboli... pag. 133
Riferimenti bibliografici... pag. 139
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

Autori

Cinzia Buratti

Andrea Nicolini

Stefano Ortica
Nato a Herrenberg (Germania) nel 1973, si è laureato in Ingegneria per l’Ambiente e il Territorio nel 1999; frequenta il 3° anno del Dottorato di Ricerca in Fisica Tecnica Ambientale presso la Facoltà di Ingegneria dell’Università degli Studi di Perugia. E’ autore di 5 pubblicazioni nel campo della trasmissione del calore e dell’acustica.
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

Riassunto

Il presente lavoro illustra il progetto e la realizzazione di un sistema di controllo attivo del rumore applicato allo scarico di motori a combustione interna a due tempi.

Per raggiungere tale obiettivo è stato necessario sviluppare specifici modelli per descrivere il campo acustico e la propagazione del rumore nei condotti di scarico dei motori a combustione interna a due tempi. La progettazione e la realizzazione del sistema di controllo è stata inizialmente effettuata facendo riferimento al rumore prodotto da un go-kart, utilizzando un banco di prova allo scopo di riprodurre in laboratorio le emissioni acustiche del motore e testare il sistema di controllo.

Sono stati sviluppati originali algoritmi di controllo di tipo adattivo specifici per il rumore prodotto da motori a due tempi funzionanti a regime variabile.

La messa a punto e le verifiche sperimentali sul prototipo di marmita elettronica sono state effettuate sia su banco che direttamente sul go-kart: si è constatato che la rapidità del fenomeno acustico, unita alla sua elevata potenza, non permette l’impiego di metodi di controllo attivo con risultati ottimali. Al contrario, l’impiego delle stesse tecniche di controllo attivo del rumore allo scarico di un comune motociclo, caratterizzato da emissioni acustiche variabili più lentamente nel tempo, ha consentito di ottenere attenuazioni significative, dell’ordine di 18 dBA sulle componenti principali.
Abstract

This research illustrates the design and realization of an active noise control system applied to the exhaust pipe of two times internal combustion engines.

In order to obtain such objective it has been necessary to develop specific models to describe the acoustic field and noise propagation in the exhaust muffler of two times internal combustion engines. The control system design has been initially carried out for the noise produced from a go-kart, using a test bench in order to reproduce the engine acoustic emissions and to test the control system in laboratory.

Original adaptive control algorithms for two times internal combustion engines have been developed.

The experimental tests on the electronic muffler prototype has been carried out on test bench and directly on the go-kart: it has been observed that the rapidity of the acoustic phenomenon and its high power, does not allow the use of active control methods with optimal results. On the contrary, the use of the same active noise control techniques to the exhaust pipe of a typical motorcycle, characterized from more slowly variable acoustic emissions, has concurred to obtain high attenuations, 18 dBA average on the main components.
Introduzione

L’attenuazione del rumore emesso allo scarico degli autoveicoli rappresenta una tappa fondamentale per la riduzione del rumore dovuto al traffico stradale. Nella maggior parte delle città italiane ed europee i livelli di rumore ambientale superano per molte ore al giorno i massimi livelli stabiliti dalla legge (L. 447/95), come testimoniano varie ricerche ed in particolare il Libro Verde della Commissione Europea “Sulle politiche future in materia di inquinamento acustico” del 4.11.96.

Gli interventi attuati per ridurre il rumore sono stati indirizzati fino ad oggi verso sistemi passivi:

– barriere acustiche, che consentono in parte di limitare la propagazione del rumore, ma la cui applicazione è limitata a strade prevalentemente extraurbane;

– asfalti speciali, atti a ridurre le emissioni acustiche causate dal rotolamento;

– aerodinamica dei veicoli.

Tra tutti gli interventi, certamente il più efficace è quello che riguarda le emissioni allo scarico degli autoveicoli. Nelle marmitte tradizionali l’attenuazione del rumore è accompagnata da un forte incremento delle perdite di carico nel dispositivo di espulsione dei gas di scarico; pertanto alla riduzione delle emissioni acustiche si contrappone una rilevante differenza di pressione agli estremi del condotto di scarico, con una perdita di potenza del motore e una diminuzione del suo rendimento.
Una marmitta con controllo attivo del rumore, a differenza delle marmitte passive, non introduce perdite di carico nel condotto di espulsione dei gas. Pertanto, oltre a ridurre il rumore, il controllo attivo potrebbe consentire anche un miglioramento delle prestazioni del motore.

Il principio fisico su cui si basa la cancellazione attiva del rumore consiste nella sovrapposizione di onde progressive che, viaggiando nella stessa direzione, con pari ampiezza, ma sfasate di 180°, determinano l’assenza di oscillazioni del mezzo materiale nel quale si propagano.

Nel corso della ricerca è stato progettato e sviluppato un prototipo di sistema di controllo attivo del rumore allo scarico di motori a combustione interna a due tempi, per regime di rotazione variabile. Il prototipo, costituito da dispositivi elettroacustici, è stato equipaggiato con altoparlanti, filtri, amplificatori e sistemi digitali di elaborazione numerica del segnale appositamente studiati per le applicazioni menzionate. L’elaborazione elettronica del segnale è stata effettuata mediante schede DSP di ultima generazione, opportunamente implementate con algoritmi e programmi originali.
1. Modelli acustici di propagazione del rumore nei condotti di scarico dei motori a combustione interna a 2 tempi

1.1 Il motore a 2 tempi

Per la progettazione e la realizzazione del sistema di controllo attivo del rumore si è fatto riferimento ad un motore a due tempi di un go-kart.

La scelta è stata dettata dal fatto che le emissioni acustiche di un go-kart sono caratterizzate da livelli di potenza estremamente elevati e da distribuzioni spettrali rapidamente variabili con il regime di rotazione.

Un sistema di controllo in grado di ridurre le emissioni acustiche di un go-kart deve essere dotato di notevoli caratteristiche in termini di velocità, potenza e robustezza, un sistema di questo tipo risulta quindi adatto anche per applicazioni su motori a due tempi di altro genere.

Il go-kart preso in esame è rappresentato nella foto in figura 1 ed è equipaggiato con un motore a due tempi di 100 cm3.

La potenza massima erogabile dal propulsore è circa 30 kW, il regime di rotazione massima è 20000 rpm. Questi mezzi hanno una trasmissione a presa diretta; ciò significa che la coppia motrice viene trasferita dal pignone all’asse delle ruote posteriori direttamente, senza che vi sia né frizione, né un cambio con posizione di folle. Il motore viene avviato in volata dal pilota mediante una manovra di spinta a mano.

Per effettuare le prove di Laboratorio, si è realizzato un cavalletto che, mantenendo sollevate le ruote motrici, permette ad esse di ruotare
liberamente quando il mezzo è in moto.

In prima approssimazione è ragionevole supporre che le emissioni acustiche globalmente emesse dal motore provengono per il 95% dal condotto di scarico; il restante 5% è dovuto alle vibrazioni del motore stesso e degli organi a cui esso è collegato.

Particolare attenzione è stata posta dunque allo studio delle modalità di generazione di propagazione del rumore e nel condotto di scarico.
1.2 Modalità di generazione del rumore

Il principio di funzionamento di un motore a due tempi è attribuito all’inglese Clark, che l’avrebbe ideato nel 1879, in realtà la costruzione del primo motore risale al 1878 ad opera del tedesco Carlo Benz.

Una delle principali caratteristiche costruttive di tali motori è l’assenza o la notevole riduzione del numero di valvole, che sono sostituite da apposite luci o feritoie praticate nella parete del cilindro motore; quest’ultimo è il contenitore nel quale uno stantuffo, muovendosi con moto rettilineo alternato, trasmette la spinta dei gas combusti all’albero motore.

Nel caso del motore a due tempi, un ciclo si compie con due corse dello stantuffo, corrispondenti ad un giro dell’albero motore.

Ne consegue che l’introduzione di un fluido attivo (combustibile e comburente) nel cilindro avviene durante una frazione della corsa di compressione e lo scarico durante una frazione della corsa di lavoro. La condizione per la quale ciò avviene è che il fluido sia preventivamente compresso, in modo tale che possa entrare nel cilindro, mentre lo scarico dei gas avviene per la pressione propria.

Il primo tempo si identifica con la corsa di lavoro, che ha inizio con l’accensione e la combustione, per poi proseguire con l’espansione fino a quando lo stantuffo apre la luce di scarico. I gas combusti cominciano ad uscire dalla luce preposta allo scarico a causa della loro pressione ancora elevata, creando una corrente diretta, nella massa fluida, verso l’uscita;
subito dopo si apre la luce di immissione e il fluido attivo entra nel cilindro grazie agli effetti della spinta fornita dalla camera del manovellismo e del richiamo della corrente dei gas combusti uscenti dalla luce di scarico. Inizia la fase di lavaggio e di immissione, ossia di travaso, che occupa il resto della corsa.

Il secondo tempo corrisponde alla corsa di ritorno dello stantuffo al P.M.S., la posizione più vicina alla testa del cilindro. La prima fase della corsa si identifica con il completamento del travaso che ha luogo fino a che non si chiude il passaggio fornito dalla luce di immissione. Durante il secondo tratto di corsa avviene la fase di compressione.

Prima della fine della corsa, il bordo inferiore dello stantuffo lascia libera la luce di alimentazione del fluido nella camera del manovellismo; il fluido vi penetra a causa della depressione che si è creata per lo spostamento dello stantuffo e viene poi compresso durante la fase successiva.

Il ciclo a due tempi è stato concepito per semplificare il sistema di distribuzione, poiché si eliminano le valvole, e per ottenere una maggiore potenza del motore a parità di dimensioni. Da quanto detto si capisce che, nel motore a due tempi, aumenta la frequenza delle corse utili introducendo problemi di carattere termico derivanti dalla più elevata temperatura media delle parti del motore e problemi di carattere acustico: il rumore degli scoppi durante un giro dell’albero motore è doppio rispetto ad un motore a quattro tempi.

In figura 2 e 3 sono rappresentati, rispettivamente, uno schema realizzativo di un motore a due tempi ed il ciclo operativo da questo eseguito.
Fig. 2: motore a scoppio a due tempi

Fig. 3: fasi del ciclo a due tempi per un motore senza valvole
La scintilla prodotta dalla candela è comandata da un segnale elettrico prodotto da una bobina; ad ogni giro dell’albero motore corrisponde una scintilla e la relativa fase di combustione.

Durante tale fase si genera un’onda acustica che dapprima si propaga nel cilindro, poi nel condotto di scarico. Pertanto, visto che nel motore a due tempi ad una scintilla della candela corrisponde un giro dell’albero motore, si può ricavare la frequenza fondamentale del segnale acustico prodotto e di quello elettrico generato dalla candela utilizzando la formula seguente:

\[f_f = (\text{rpm}) \cdot 60 \]

(1)

1.3 Propagazione acustica nel condotto di scarico

Nel caso del go-kart in esame, il condotto di scarico è costituito da un condotto iniziale, dalla marmitta e da una flangia finale.

Il condotto iniziale, di forma cilindrica, presenta una curva, ha una lunghezza di 20 cm e una sezione circolare del diametro di 5 cm.

La marmitta, anch’essa di forma cilindrica, è lunga 50 cm e presenta una sezione circolare del diametro di 3 cm.

La flangia finale riduce la dimensione della parte terminale della marmitta; è infatti costituita da una sorta di tappo che permette comunque la fuoriuscita dei gas combusti attraverso un foro ed un condotto finale.

In figura 4 si riporta il particolare del condotto di scarico.
In figura 5 è invece riportato il circuito elettrico equivalente del condotto di scarico, nel quale a ciascun componente è associato un tratto del condotto; in particolare, il tubo iniziale e la marmitta corrispondono ad induttanze che possono essere espresse secondo le seguenti relazioni:

\[
L_1 = \frac{\varrho \cdot 1}{S_1} = 146.93 \text{ kg m}^{-1}
\]

(2)

\[
L_2 = \frac{\varrho \cdot 1}{S_2} = 848.82 \text{ kg m}^{-1}
\]

(3)

Fig. 4: fotografía del condotto di scarico del go-kart, effettuata durante la registrazione del rumore
dove l è la lunghezza condotto ed S l’area della sezione. Nel caso del condotto iniziale, poiché questo presenta una curva, si sostituisce ad l la lunghezza equivalente \((1+0.8 \cdot D) \), dove D è il diametro della sezione del tubo.

La flangia può essere considerata uguale ad una cavità (corrispondente alla capacità C1) forata (il foro è rappresentato dalla serie L3-R2) e ad un tubo finale (l’induttanza L4).

In particolare, utilizzando le formule presenti in Letteratura, si ha:

\[
C1 = \frac{V_f}{\gamma \cdot P} = 2.24 \cdot 10^{-9} \left[\frac{m^4 \cdot s^2}{kg} \right] \tag{4}
\]

\[
L3 = \frac{\rho}{D_f} = 40 \left[\frac{kg}{m^4} \right] \tag{5}
\]

\[
R2 = \frac{\ln\left(\frac{D_f}{h_f}\right)}{4 \cdot S_f} \cdot \sqrt{2 \cdot \rho \cdot \omega \cdot \mu} = 70.62 \left[\frac{kg}{m^4 \cdot s} \right] \tag{6}
\]

\[
L4 = \frac{\rho \cdot l_f}{S_f} = 240 \left[\frac{kg}{m^4} \right] \tag{7}
\]
Il circuito equivalente si chiude sulla resistenza R_1, corrispondente all’aria in uscita al condotto di scarico.

Poiché lo scoppio all’interno del cilindro può essere approssimato ad uno stimolo impulsivo, è interessante valutare la risposta all’impulso del circuito equivalente.

Nelle figure 6 e 7 si riportano rispettivamente la risposta impulsiva e la funzione di trasferimento del circuito proposto, dalle quali si evince che il comportamento del condotto di scarico è di tipo passa-basso.
Fig. 6: risposta impulsiva del circuito equivalente del condotto di scarico

Fig. 7: funzione di trasferimento del circuito equivalente del condotto di scarico
1.4 Il rumore del go-kart

1.4.1 Modalità di misura

E’ stata condotta una campagna di misure in ambiente aperto finalizzata alla caratterizzazione del rumore emesso dal go-kart a diversi regimi di rotazione.

A tale proposito il go-kart è stato posto su un piano in asfalto che riproduce le comuni condizioni di impiego del mezzo.

I rilevamenti dell’emissione rumorosa sono stati condotti seguendo la normativa ISO 5130 del 1982, specifica per il rumore emesso da autoveicoli in stazionamento. In particolare, tale normativa prescrive che le misure siano condotte in campo libero, in condizioni climatiche non avverse e velocità del vento non superiore ai 5 m/s. Il suolo deve essere compatto affinché abbia alto potere riflettente. Il microfono deve essere posto alla distanza di 0.5 m dalla terminazione del tubo di scarico, formando con esso un angolo di 45° ad un’altezza dal suolo di almeno 0.2 m.

Il rumore prodotto dal motore del go-kart è stato registrato su un DAT, allo scopo di riprodurlo in laboratorio.

Precisamente è stato registrato su un nastro a due canali: sul primo è stato inserito il rumore proveniente dal motore e prelevato all’uscita del condotto di scarico grazie al microfono; sul secondo è stato registrato il segnale elettrico prodotto dalla candela.

Il segnale della candela è stato prelevato applicando alla bobina un circuito partitore per ridurne l’ampiezza; infatti tale segnale ha solitamen-
te un valore picco-piccointorno ai 20 Volts, troppo elevato sia per essere registrato direttamente (il DAT andrebbe in “overflow”) sia per essere elaborato dal DSP (provocerebbe saturazioni se non addirittura danneggiamenti della scheda di acquisizione A/D). Il circuito partitore utilizzato è schematizzato in figura 8 ed è costituito da due trimmer resistivi R1 e R2, rispettivamente aventi valori massimi limite di 100 kΩ e 100 Ω.

In base ai valori riportati in figura 8, si ottiene:

\[V_u = V_i \cdot \frac{30}{30 + (20000 + 70)} = \frac{V_i}{670} \]

(8)

Fig. 8: circuito partitore utilizzato per la registrazione del segnale della candela
ricavando un’attenuazione tra ingresso e uscita pari a 56 dB, che consente di evitare i problemi sopra descritti.

1.4.2 Caratteristiche del rumore

In figura 9 è riportato lo spettro del rumore emesso dal go-kart in bande di 1/3 d’ottava, ottenuto inviando il segnale registrato, a regime stazionario, all’ingresso di un analizzatore di spettro.

Il livello d’intensità globale rilevato è di 108.5 dB. In figura 10 è riportato, indicato come “input2”, l’andamento nel tempo ed in “spectrum2” lo spettro del rumore; si nota la presenza di una frequenza fondamentale pari al numero di giri al secondo del motore (uguale circa a 125 Hz cioè 7500 rpm) ed armoniche di potenza rilevante fino a 5 KHz. L’andamento dello spettro era atteso poiché le macchine rotanti sono sede di fenomeni ciclici (lo spettro del rumore generato è dato da uno sviluppo in serie di Fourier di una replica).

Nella stessa figura, indicati come “input1” e “spectrum1”, sono riportati rispettivamente l’andamento nel tempo dell’impulso generato dalla candela ed il suo spettro; è interessante notare che anche lo spettro di questo segnale è costituito da una componente fondamentale centrata sui 125 Hz e dalle sue armoniche.

In questo secondo spettro, tuttavia, le componenti del segnale sono molto più “pulite” che nello spettro del rumore. Ciò è dovuto al fatto che, mentre l’impulso elettrico ha un andamento molto vicino a quello teorico,
il rumore prodotto dallo scoppio in camera di combustione, pur essendo assimilabile ad un impulso, viene modificato dalla presenza del condotto di scarico secondo la funzione di trasferimento di figura 7.

Infine il rumore del go-kart, registrato su file in formato “wave”, è stato inviato nel tubo primario della marmitta elettronica al fine di analizzarne le componenti spettrali.

![Diagram](image)

Fig. 9: spettro del rumore del go-kart in banda 1/3 d’ottava
Fig. 10: andamento nel tempo e in frequenza dei segnali “rumore” e “candela”

1.5 Il banco di prova

Al fine di realizzare e provare il sistema di controllo attivo del rumore applicato al go-kart, è stato realizzato un banco di prova avente lo scopo di riprodurre in Laboratorio le emissioni acustiche del motore.

Il banco di prova è costituito da un adattatore di impedenza acustica che collega la marmitta elettronica (vedi Capitolo 2) con una cassa acustica, nella quale viene generato il rumore del go-kart.

L’adattatore di impedenza, di forma tronco-conica, è stato realizzato in acciaio Inox, utilizzando una lastra di spessore 1 mm (massimo spesso-
re che consente di realizzare la forma conica desiderata); la struttura ottenuta (foto in figura 11), grazie all’impiego di due flange circolari alle terminazioni, può essere connessa alla marmitta elettronica, alla cassa acustica e all’altoparlante che invia il segnale di rumore.

Fig. 11: fotografia dell’adattatore di impedenza

Inoltre è stata progettata una cassa acustica chiusa in acciaio Inox di forma parallelepipedica per ridurre l’effetto di rumore dell’onda prodotta dall’altoparlante verso l’esterno.

L’altoparlante è inserito al centro di una faccia della cassa tramite
un’apposita flangia.

Fig. 12: *struttura della cassa acustica*

Le dimensioni della struttura sono 57.8 X 37.8 X 48 cm, come indicato in figura 12 (foto in figura 13).

La cassa acustica, riempita di materiale fonoassorbente (lana di roccia), è stata rinforzata esternamente per limitare le vibrazioni delle sue pareti alle basse frequenze.

I vari componenti del sistema banco di prova sono stati collegati fra loro utilizzando le flange presenti e isolando acusticamente le giunzioni mediante silicone ad alta temperatura.
Il banco di prova è rappresentato nella foto di figura 14.
L’altoparlante impiegato (vedi foto in figura 15) per la generazione del rumore è il SONORA H776 di potenza nominale 200W e diametro del diaframma di 27.8 cm.

Fig. 13: *fotografia della cassa acustica*
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

Fig. 14: fotografia del banco di prova

Fig. 15: fotografia dell'altoparlante SONORA H776
1.6 Funzionamento del banco di prova

Per la determinazione delle caratteristiche acustiche del banco di prova sono state eguagliate le impedenze corrispondenti alla tromba conica e al tubo della marmitta così da realizzare un adattamento di impedenza.

Al tubo della marmitta corrisponde un'induttanza di valore

\[L_M = \frac{\rho \cdot l}{S} \] \hspace{1cm} (9)

dove \(\rho \) è la densità dell'aria, \(S \) l'area della sezione del tubo interno (nel nostro caso circolare, di raggio 0.015m) ed \(l \) è la sua lunghezza equivalente. Quest'ultima si considera uguale alla lunghezza del tratto del tubo dritto (0.5 m) più la lunghezza equivalente corrispondente alla curva che lo caratterizza (0.4 m).

Per quanto riguarda il calcolo dell'impedenza della tromba di forma conica, in base alla figura 16, l'andamento della sezione in funzione della coordinata \(x \) è del tipo:

\[S(x) = M \cdot x^2 \] \hspace{1cm} (10)

Detta \(v(x) \) la velocità delle particelle sulla sezione corrispondente all'ascissa \(x \), l'energia cinetica del gas nel tratto \(dx \) è:
Fig. 16: schema della vista laterale della tromba di forma conica

\[dW_c = v^2(x) \frac{dm}{2} = \frac{q^2}{S(x)} \cdot \rho \cdot S(x) \cdot dx \]

(11)

dove \(q \) rappresenta la portata acustica e \(\rho \cdot S(x) \cdot dx \) l'elemento di massa \(dm \).

Si può quindi ottenere l'energia cinetica totale che caratterizza il tronco di cono integrando l'espressione di \(dW_c \) tra \(l_0 \) e \(l_1 \):

\[W_c = \int_{l_0}^{l_1} \frac{\rho \cdot q^2}{2 \cdot S(x)} dx = \frac{\rho \cdot q^2}{2 \cdot M} \left(\frac{1}{l_0} - \frac{1}{l_1} \right) \]

(12)

Poiché dalla (10) segue che \(M \cdot l_i^2 = S_i \) per \(i = 1,2 \) si ricava la seguente espressione:
Eguagliando la (13) all'equazione dell'energia cinetica di un'iner-tanza, cioè:

\[W_e = \frac{1}{2} \cdot L \cdot q^2 \quad (14) \]

si ottiene che la tromba conica presenta un'impedenza puramente induttiva uguale a:

\[L_C = \frac{\rho \cdot q^2}{\sqrt{M}} \left(\frac{1}{\sqrt{S_0}} - \frac{1}{\sqrt{S_1}} \right) \quad (15) \]

dove \(S_0 \) e \(S_1 \) sono le aree delle sezioni estreme del tronco di cono, quindi di forma circolare, i cui raggi sono noti e corrispondono rispettivamente a quello del tubo della marmitta (0.015 m) e a quello dell'altoparlante (0.139 m).

Per adattare l'impedenza della tromba conica a quella del tubo della marmitta è necessario ora imporre l'uguaglianza tra le espressioni (9) e (15).

Dall'equazione \(L_C = L_M \), si ricava il valore di \(\sqrt{M} \) che permette di realizzare un perfetto adattamento. Si ottiene \(\sqrt{M} = 0.0263 \).
Sapendo che, dalla (10), \(M \cdot l_1^2 = \pi \cdot (0.139)^2 \) e \(M \cdot l_0^2 = \pi \cdot (0.015)^2 \), si ricava che la lunghezza del tronco di cono che produce l’adattamento di impedenza è la seguente:

\[
l_1 - l_0 = \sqrt{\frac{\pi}{M} \cdot (0.124)} = 8.35 \text{ m}
\]

(16)

Essendo tale valore troppo elevato per problemi d’ingombro si è optato per una lunghezza dell’adattatore di impedenza di 1 m. Si è così ottenuta un’induttanza del tronco di cono uguale a circa 0.12 volte quella del tubo della marmitta, con una perdita di circa 9.2 dB, che saranno compensati fornendo una maggiore potenza all’altoparlante.

1.7 Caratterizzazione acustica del banco di prova

Per verificare il funzionamento, è stato individuato un circuito equivalente elettrico dell’intero banco di prova utilizzato.

Nella figura 17 si riporta il circuito equivalente della cassa acustica del banco di prova e del cono di adattamento.

La cassa acustica è modellata dai seguenti componenti elettrici: il generatore di tensione \(Er \), che rappresenta il segnale acustico prodotto dall’altoparlante, \(Rg \) è la sua resistenza interna mentre \(Re \) è la resistenza elettrica della bobina mobile; i componenti del parallelo RLC possono essere calcolati come segue:
Fig. 17: circuito equivalente del banco di prova

\[
C_m = \frac{L_{am} \cdot S_D^2}{B^2 \cdot l_b^2} = 0.0099 \left[\frac{m^4 \cdot s^2}{kg} \right] \quad (17)
\]

\[
L_{cm} = \frac{C_{as} \cdot B^2 \cdot l_b^2}{S_D^2} = 0.0002 \left[\frac{kg}{m^4} \right] \quad (18)
\]

\[
R_{cm} = \frac{B^2 \cdot l_b^2}{S_D^2 \cdot R_{as}} = 31692 \left[\frac{kg}{m^4 \cdot s} \right] \quad (19)
\]
dove R_{as}, C_{as} e L_{as} rappresentano rispettivamente resistenza, capacità e induttanza associate alla cassa acustica, S_D è la superficie del diaframma dell’altoparlante, B e l_b sono induzione magnetica e lunghezza del filo conduttore costituente la bobina.

Il cono ed il condotto di scarico sono modellati da un’induttanza, calcolata con la seguente equazione:

$$L_m = \frac{\rho}{\sqrt{M}} \left(\frac{1}{\sqrt{S_0}} - \frac{1}{\sqrt{S_1}} \right) + \frac{\rho \cdot l_m}{S_0} = 1527.88 \left[\frac{\text{kg}}{\text{m}^4} \right]$$ \hspace{1cm} (20)

In figura 18 è riportata la risposta in frequenza del banco di prova utilizzato che, all’interno della banda acustica, presenta un comportamento di tipo passa basso.

In figura 19 è riportata l’analisi in bande da 1/3 d’ottava ottenuta dopo aver acquisito il segnale di rumore mediante il fonometro Investigator 2260 della B&K; anche in questo caso si nota la presenza di una componente fondamentale a 125 Hz e di altre armoniche determinate dalla presenza del banco di prova.
Fig. 18: *funzione di trasferimento del circuito equivalente del banco di prova*

Fig. 19: *spettro del rumore in uscita dal banco di prova*
2. **Progetto e costruzione della marmitta elettronica**

2.1 *La marmitta elettronica*

La marmitta elettronica è un dispositivo elettroacustico che viene installato nel condotto di scarico del motore a due tempi; nel caso in esame il condotto di scarico del go-kart è descritto nel Capitolo 1.

Lo scopo della marmitta elettronica è la generazione del segnale acustico di antirumore che deve interferire in maniera distruttiva con il rumore del motore proveniente dal condotto di scarico.

A tale proposito la forma e le dimensioni della marmitta elettronica sono tali da formare una cavità attorno al condotto di scarico; tale cavità è rastremata in modo da presentare, in corrispondenza della sezione terminale del condotto di scarico, una sezione coassiale al condotto stesso (vedi figura 20).

![Diagramma della marmitta elettronica](image.png)

Fig. 20: sezione terminale della marmitta elettronica e del condotto di scarico
Il segnale del rumore fuoriesce dal condotto di scarico, mentre quello dell’antirumore fuoriesce dall’anello coassiale esterno. All’uscita della sezione terminale avviene l’interferenza distruttiva.

La generazione dell’anti rumore è garantita da quattro altoparlanti alloggiati nel corpo della marmitta elettronica (vedi figura 21).

Fig. 21: *alloggiamento degli altoparlanti nella marmitta elettronica*

Gli altoparlanti sono alimentati da un amplificatore comandato dall'unità di controllo (vedi Capitolo 3).

Gli altoparlanti sono il modello RXL915E della RCF con potenza nominale 25 W; all’esterno sono costruite quattro casse acustiche riempite di materiale fonoassorbente, che consentono di incrementare l’efficienza degli altoparlanti e di limitare le emissioni verso l’esterno.

Durante le fasi di prova e collaudo la marmitta è stata collegata al banco di prova che simula il comportamento acustico del go-kart.

L’installazione definitiva della marmitta elettronica nel condotto di
scarico del go-kart è effettuata in serie alla marmitta già in dotazione al mezzo e non direttamente al collettore di scarico del motore poiché, come accade in tutti i motori a due tempi, la marmitta in dotazione svolge una funzione non solo di attenuazione del rumore, ma anche necessaria al ciclo di funzionamento del motore stesso: più precisamente, svolge una funzione simile a quella delle valvole dei motori a quattro tempi ed è pertanto insostituibile.

2.2 Caratteristiche meccaniche

Il dispositivo è realizzato in lamiera di acciaio Inox dello spessore di 4.5 mm, che garantisce un elevato isolamento fra il condotto di propagazione e l'esterno. Per garantire maggiore rigidità, le superfici interne sono state ricoperte di vernice antirombo; tale intervento permette di irrigidire le lastre di acciaio poiché la vernice forma uno strato di alcuni decimi di millimetro.

La forma e le dimensioni del prototipo sono state scelte, oltre che in base a considerazioni di carattere acustico (come per il progetto delle casse dei quattro altoparlanti), anche tenendo conto della temperatura dei gas combusti; la quantità di calore ad essi associata, trasmessa per conduzione attraverso le pareti metalliche, una volta giunta nella camera di accoppiamento, potrebbe dar luogo a temperature tali da danneggiare le membrane degli altoparlanti.

In figura 22 si riporta il disegno quotato della marmitta elettronica.
Fig. 22: disegno quotato della marmitta elettronica
Come si può notare dalla foto in figura 23, la parte iniziale del prototipo realizzato è dotata di flangia per il collegamento con il condotto di scarico del go-kart (di colore nero) o con il banco di prova.

Le dimensioni della marmitta elettronica sono le seguenti:
- Casse Acustiche: forma parallelepipedo di volume 19.1 x 9.6 x 6.1 cm = 1118.5 cm³;
- Tubo primario: diametro interno 3.1 cm, spessore 2 mm;
- Tubo secondario (di antirumore): diametro interno 5.1 cm, spessore 4.5 mm;
- Camera di accoppiamento: forma parallelepipedo di volume 20 x 13 x 13 cm = 3380 cm3;

Sono presenti dei fori, del diametro di 8 mm, che mettono in comunicazione il volume delle casse acustiche direttamente con la camera di accoppiamento; tale intervento permette di aumentare l’efficienza degli altoparlanti poiché si incrementa la cedevolezza del sistema elastico costituito dall’aria e dalla membrana del cono.

L’aumento della cedevolezza ha come conseguenza indesiderata l’innalzamento della frequenza di risonanza del sistema, con un rendimento ridotto alle basse frequenze.

Il sistema ottenuto è quello di figura 24 dove si può pensare che l’aria contenuta nel foro sia una massa oscillante, mentre quella della cavità costituenti la cassa agisca come molla di richiamo.

Fig. 24: schema di una cassa acustica della marmitta elettronica
La struttura può quindi essere assimilata ad un risonatore di Helmoltz avente come frequenza di risonanza:

\[f_r = \frac{c}{2 \cdot \pi} \sqrt{\frac{S}{V \cdot L_e}} \quad (21) \]

dove:
- \(S \) è l’area del foro
- \(L_e \) è la lunghezza equivalente del foro, vale a dire \(L+0.8*D \) (\(D \) è il diametro del foro)
- \(V \) è il volume della cassa acustica

I valori scelti sono tali da rendere il valore di \(f_r \) uguale a quello della frequenza di risonanza meccanica degli altoparlanti risolvendo, dunque, i problemi precedentemente descritti.

Le connessioni elettriche per l’alimentazione degli altoparlanti della marmitta elettronica sono realizzate in modo da ottenere un’impedenza di ingresso della rete globale uguale a 4 Ohm, che corrisponde esattamente all’impedenza di ingresso di ciascun altoparlante. A tale scopo gli altoparlanti sono stati disposti a coppie in serie, collegando poi le due coppie ottenute in parallelo fra loro (schema in figura 25).
Allo scopo di determinare le caratteristiche acustiche della marmitta elettronica è stato individuato un circuito elettrico equivalente, che asso-
cia uno specifico componente elettronico alle diverse parti della marmitta elettronica.

In particolare i quattro altoparlanti e le loro casse acustiche si com-
portano come un circuito risonante RLC parallelo, corrispondente alla
cassa, e un circuito RLC serie, associato al foro che la collega alla camera
di accoppiamento (v. figura 26).

Fig. 25: collegamento elettrico degli altoparlanti della marmitta
elettronica

2.3 Caratteristiche acustiche

Allo scopo di determinare le caratteristiche acustiche della marmitta
elettronica è stato individuato un circuito elettrico equivalente, che asso-
cia uno specifico componente elettronico alle diverse parti della marmitta
elettronica.

In particolare i quattro altoparlanti e le loro casse acustiche si com-
portano come un circuito risonante RLC parallelo, corrispondente alla
cassa, e un circuito RLC serie, associato al foro che la collega alla camera
di accoppiamento (v. figura 26).
Il generatore di tensione E_g rappresenta il segnale acustico prodotto dagli altoparlanti, R_g è la sua resistenza interna mentre R_e è la resistenza elettrica della bobina mobile; i componenti del circuito parallelo RLC possono essere calcolati come:

$$C_c = \frac{L_{asm} \cdot S_{Dm}^2}{B_m^2 \cdot l_b^3} = 5 \cdot 10^{-4} \left[\frac{m^4 \cdot s^2}{kg} \right] \quad (22)$$

$$L_c = \frac{C_{asm} \cdot B_m^2 \cdot l_b^2}{S_{Dm}^2} = 8.3 \cdot 10^{-5} \left[\frac{kg}{m^4} \right] \quad (23)$$
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

\[R_c = \frac{B_m^2 \cdot l_b^2}{S_{Dm} \cdot R_{asm}} = 4886 \left[\frac{kg}{m^4 \cdot s} \right] \]

(24)

dove \(R_{asm}, C_{asm} \) e \(L_{asm} \) rappresentano rispettivamente resistenza, capacità e induttanza associate alla cassa acustica, \(S_{Dm} \) è la superficie del diaframma dell’altoparlante, \(B_m \) e \(l_b \) sono induzione magnetica e lunghezza del filo conduttore costituente la bobina.

Il valore dei componenti del circuito serie RLC sono valutati mediante le seguenti relazioni:

\[L_f = \frac{\rho}{D_{fm}} = 150 \left[\frac{kg}{m^4} \right] \]

(25)

\[R_f = \frac{\ln \frac{D_{fm}}{h_{fm}}}{4 \cdot S_{fm}} \cdot \sqrt{2 \cdot \rho \cdot \omega \cdot \mu} = 1851 \left[\frac{kg}{m^4 \cdot s} \right] \]

(26)

dove \(D_{fm} \) è il diametro dell’apertura, \(h_{fm} \) lo spessore del foro, \(\omega \) la pulsazione e \(\mu \) la viscosità dell’aria.

La capacità \(C_f \) (corrispondente alla massa d’aria mobile nel foro di raccordo) e le altre grandezze elettriche del circuito sono valutate ricordando l’analogia tra circuiti elettrici ed acustici.

Un tubo di lunghezza \(l \) e sezione di area \(S \) corrisponde ad un’indut-
tanza:

\[
L = \frac{\rho \cdot 1}{S}
\]

(27)

dove \(\rho \) è la densità dell'aria.

Una cavità di volume \(V \) corrisponde invece ad una capacità:

\[
C = \frac{V}{\gamma \cdot P}
\]

(28)

dove \(P \) è la pressione interna e \(\gamma \) il rapporto tra i calori specifici a pressione e a volume costante dell'aria all'interno della cavità.

I componenti elettrici restanti sono quindi calcolati come:

\[
C_t = \frac{V_{fm}}{\gamma \cdot P_{fm}} = 3.6 \cdot 10^{-13} \left[\frac{m^4 \cdot s^2}{kg} \right]
\]

(29)

\[
C1 = \frac{V_{cm}}{\gamma \cdot P_{cm}} = 2.4 \cdot 10^{-8} \left[\frac{m^4 \cdot s^2}{kg} \right]
\]

(30)

\[
L1 = \frac{\rho}{D_{cm}} = 12 \left[\frac{kg}{m^4} \right]
\]

(31)
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

\[
L_2 = \frac{\rho}{\sqrt{M_{1m}}} \left(\frac{1}{\sqrt{S_{2m}}} - \frac{1}{\sqrt{S_{cm}}} \right) + \frac{\rho \cdot l_{2m}}{S_{2m}} = 30.93 \left[\frac{\text{kg}}{\text{m}^4} \right] \quad (32)
\]

\[
R_1 = \ln \frac{d_{cm}}{4 \cdot h_{cm}} \cdot \sqrt{2 \cdot \rho \cdot \omega \cdot \mu} = 12.2 \left[\frac{\text{kg}}{\text{m}^4 \cdot \text{s}} \right] \quad (33)
\]

Si tiene conto del fatto che l’onda generata dagli altoparlanti entra nella camera di accoppiamento, assimilabile ad una cavità (C1). Ad un lato della cavità fuoriesce il segnale di controllo. Questa situazione, come tutte quelle in cui si presenta un’apertura o un piccolo foro che permetta il passaggio di onde sonore da una cavità al di fuori di essa, può essere schematizzata con una serie RL espressa dalle (31) e (33). Ciò è indicato da una resistenza R1 e da L1 (vedi figura 26).

In seguito, il tubo finale a sezione di corona circolare, corrisponde ad un’induttanza L2 che tiene conto di un primo tratto a sezione variabile calcolabile con la (15) in serie con la parte finale a sezione costante (valutabile generalizzando la (27) al caso di sezione a forma di corona circolare); infine, il circuito si chiude sulla resistenza di carico dell’aria (corrispondente a circa 412 \(\Omega \)).

E’ stato analizzato il comportamento del circuito di figura 26, utilizzando il software di analisi Micro-Cap 6 e tenendo conto del numero e tipo di altoparlanti di controllo; ne consegue che il generatore \(E_g \) produce il
segna che tutti e quattro gli altoparlanti generano insieme, mentre ai nodi 1 e 5 del circuito si presentano in parallelo quattro circuiti identici a quello di un singolo Bass Reflex, che sono l’equivalente delle casse acustiche. In figura 27 è riportata la funzione di trasferimento ottenuta per questo tipo di struttura che, all’interno della banda acustica, presenta un comportamento di tipo passa basso.

Per analizzare il comportamento acustico dell’intera marmitta elettronica, è necessario considerare anche il collettore della marmitta elettronica, dove è inviato il segnale di rumore.

Fig. 27: funzione di trasferimento del circuito equivalente della marmitta elettronica
Come affermato in precedenza, essendo questo semplicemente un tubo di lunghezza equivalente 0.8 m, esso corrisponde ad un’induttanza di valore

$$L_{csm} = \frac{\rho \cdot l_m}{S_0} = 1358.12 \left[\frac{\text{kg}}{\text{m}^4} \right]$$ \hspace{1cm} (34)

Collegando questa induttanza direttamente alla resistenza dell’aria in uscita al precedente circuito, è possibile valutare il comportamento dell’intera marmitta elettronica.

2.3.1 Gli altoparlanti

La scelta dei quattro altoparlanti impiegati nella marmitta elettronica è stata effettuata in base alle seguenti considerazioni: il sistema di controllo attivo del rumore deve prevedere che la sorgente secondaria generi una potenza uguale a quella primaria. Si ricorda che la potenza di un altoparlante specificata dai costruttori è definita usualmente come la massima potenza elettrica media che può essere inviata su di esso senza che si verifichino danneggiamenti o che la distorsione non lineare superi un limite prefissato.

Poiché è stato rilevato all'uscita del tubo di scarico del motore un livello di intensità acustica di circa 102 dB, corrispondente ad un valore di intensità pari a
ed ipotizzando una propagazione di tipo sferico dall’uscita della marmitta al punto di misura, si ricava come potenza della sorgente un valore di:

$$W = 4 \cdot \pi \cdot r^2 \cdot I = 0.188 \, \text{W}$$ \hspace{1cm} (36)

Essendo il rendimento elettrico di un altoparlante (rapporto tra potenza acustica prodotta e potenza elettrica di alimentazione) generalmente molto piccolo (compreso di solito tra lo 0.2% e il 2%), ipotizzando il caso peggiore di un rendimento dello 0.2%, la potenza nominale richiesta è

$$W_e = 0.188 \cdot \frac{1000}{2} = 94 \, \text{W}$$ \hspace{1cm} (37)

In seguito a queste considerazioni è stata adottata la scelta di quattro altoparlanti ellittici della potenza di 25 W ciascuno.

2.4 Funzione di trasferimento della marmitta elettronica

Al fine di confrontare il comportamento teorico della marmitta elettronica con quello reale, è stata condotta un’indagine sperimentale volta alla verifica della funzione di trasferimento della marmitta elettronica.
In figura 28 è riportato l’andamento reale della funzione di trasferimento della marmitta elettronica.

Come è possibile notare, c’è un perfetto accordo tra l’andamento delle curve riportate nelle figure 27 e 28, ottenute simulando rispettivamente il modello elettrico ed il modello reale.

Entrambe le funzioni di trasferimento evidenziano il comportamento passa basso della marmitta elettronica.

Fig. 28: funzione di trasferimento della marmitta elettronica
3. Unità di controllo ed algoritmi di calcolo

3.1 L’unità di controllo

La marmitta elettronica è il dispositivo elettroacustico che emette il segnale di antirumore e provvede all’accoppiamento con il rumore prodotto dal motore.

Il segnale di antirumore viene generato da un’unità di controllo, il cui funzionamento è basato su tecniche di elaborazione numerica del segnale; in particolare il segnale della candela del motore viene opportunamente “trattato” in modo che sia minimo il segnale acustico in uscita dalla marmitta elettronica; a tale proposito un microfono (microfono d’errore) verifica l’ampiezza del segnale acustico in uscita dalla marmitta stessa.

In figura 29 si riporta lo schema di funzionamento dell’unità di controllo.

L’elaborazione numerica del segnale della candela viene effettuata grazie ad algoritmi di concezione originale, sviluppati appositamente per motori a due tempi.

Il segnale di antirumore generato dall’unità di controllo (vedere figura 29) viene amplificato mediante un amplificatore lineare di potenza che alimenta gli altoparlanti installati nella marmitta elettronica.
La marmitta elettronica ed il sistema di controllo sono stati testati nel banco di prova descritto nel Capitolo 1.

A tal proposito è stato adattato l’apparato sperimentale riportato in figura 30, nel quale sono presenti i seguenti componenti:

a) **DAT (Digital Audio Recorder) TCD-D7 della Sony:** è un sistema digitale per la registrazione e riproduzione del suono. Su nastro magnetico sono registrate stringhe a 16 bit; permette un rapporto segnale/rumore superiore agli 87 dB. Il segnale stereo registrato sul nastro è costituito su un canale dal segnale elettrico d’accensione della candela, sull’altro dal segnale di rumore da ridurre tramite il sistema utilizz-

Fig. 29: schema di funzionamento dell’unità di controllo

3.2 Apparato sperimentale

La marmitta elettronica ed il sistema di controllo sono stati testati nel banco di prova descritto nel Capitolo 1.

A tal proposito è stato adattato l’apparato sperimentale riportato in figura 30, nel quale sono presenti i seguenti componenti:

a) **DAT (Digital Audio Recorder) TCD-D7 della Sony:** è un sistema digitale per la registrazione e riproduzione del suono. Su nastro magnetico sono registrate stringhe a 16 bit; permette un rapporto segnale/rumore superiore agli 87 dB. Il segnale stereo registrato sul nastro è costituito su un canale dal segnale elettrico d’accensione della candela, sull’altro dal segnale di rumore da ridurre tramite il sistema utilizz-
zato. Per evitare di dover riavvolgere il nastro all’inizio di ogni prova sperimentale, il segnale registrato è stato trasferito su PC in formato “wav”;

b) **amplificatori** TA-FE710R della Sony: ne sono stati utilizzati due; uno per amplificare il segnale in ingresso alla marmitta elettronica, l’altro per pilotare l’altoparlante che riproduce il rumore de go-kart. Il modello utilizzato è caratterizzato da una potenza di 100 W per canale, con un’impedenza di carico compresa tra i 4 e i 16 ohm;

c) l’unità di controllo è costituita da un **DSP (Digital Signal Processing)** ADSP 21061 della Analog Devices: si tratta di un DSP appartenente alla famiglia ADSP 21000 prodotto dalla Analog Devices, con architettura SHARC. Il 21061 lavora a 32 bit in virgola mobile ed è speci-
fico per il processamento di segnali vocali, sonori e grafici. Lo SHARC costruisce il cuore del DSP sulla famiglia ADSP 21000, per formare un sistema completo sul chip, aggiungendo una porta duale sulla SRAM e periferiche I/O integrate supportate da bus I/O dedicati.

Il processore può eseguire ogni istruzione in un singolo ciclo. Il cuore del processore è formato da tre unità computazionali, un Program Sequencer, due generatori di indirizzi dei dati (DAG), il timer, la cache delle istruzioni e un file di registro dei dati.

Il flusso di programma in tale DSP è lineare; infatti il processore esegue le istruzioni del programma in modo sequenziale. Le variazioni in questo flusso lineare sono provocate dalla presenza delle seguenti strutture:

- loops: sequenza di istruzioni da eseguire diverse volte con zero-overhead che è l’abilità del processore di ripetere l’istruzione senza utilizzare il tempo altrimenti necessario per saltare all’inizio dell’istruzione stessa;

- subroutines: il processore interrompe temporaneamente il flusso sequenziale per eseguire delle istruzioni in un’altra parte della memoria del programma;

- jumps: il flusso di programma è temporaneamente trasferito in un’altra parte della memoria del programma;

- interrupts: un caso particolare di subroutines nella quale l’esecuzione della routine è condizionata da un evento che accade al tempo d’avvio
e non da un’istruzione del programma;

– idle: una speciale istruzione che causa la cessazione delle operazioni in corso sul processore, mantenendo lo stato attuale. Quando avviene un interrupt, il processore si dedica a quest’ultimo e continua la normale esecuzione.

Il Program Sequencer ha il compito di gestire queste strutture di programma: il suo scopo principale è, infatti, quello di selezionare l’indirizzo della successiva istruzione da eseguire. Oltre a questo esegue una vasta gamma di altre funzioni.

I DAGs semplificano il compito di organizzare i dati mantenendo i puntatori in memoria: forniscono indirizzamenti immediati o indiretti. Il DAG1 genera indirizzi a 32 bit sul bus degli indirizzi DM, mentre il DAG2 genera indirizzi a 24 bit sul bus degli indirizzi PM.

Program Sequencer e DAGs permettono l’esecuzione delle operazioni con la massima efficienza poiché le unità computazionali si dedicano esclusivamente al processamento dei dati.

Il processore include, inoltre, un timer ad intervalli programmabili che può generare interrupt periodici: si programma scrivendo i valori nei suoi due registri e controllando le operazioni attraverso un bit in un registro apposito. Un’uscita esterna, TIMEXP, segnala agli altri dispositivi che il contatore del timer è scaduto.

Un file di registro è usato per trasferire dati tra le unità computazionali ed i bus dati immagazzinando anche i vari risultati intermedi. È composto da 10 porte che contengono 32 registri, 16 primari ed i rimanenti...
nenti secondari, che, combinati con un’architettura di tipo Harvard, permettono un flusso incondizionato dei dati tra le unità computazionali e la memoria interna.

La memoria è suddivisa in due blocchi: uno specifico per il programma, l’altro utilizzato per l’immagazzinamento dei dati.

Il DMA (Accesso Diretto in Memoria) fornisce vari tipi di meccanismi per il trasferimento di un intero blocco di dati, ciascuno in ambedue le direzioni:
- dalla memoria interna a quella esterna e a quella delle periferiche mappate in memoria;
- dalla propria memoria interna a quella di un altro ADSP 2106X;
- dalla memoria interna al processore ospite;
- dalla memoria interna alle porte seriali I/O;
- dalla memoria esterna alle periferiche esterne.

Il DSP 21061 possiede inoltre due porte seriali sincrone indipendenti, SPORT0 e SPORT1, che forniscono un’interfaccia I/O ad una grande varietà di dispositivi periferici. Le porte seriali possono trasmettere e ricevere indipendentemente fornendo una maggiore flessibilità per le comunicazioni seriali.

La scheda in cui è contenuto il DSP appena descritto può essere semplicemente schematizzata come in Figura 31. Essa presenta una porta seriale RS-232 che permette la comunicazione con un host computer utilizzando protocolli seriali asincroni. Il software di sviluppo utilizzato
permette comunque di controllare il corretto funzionamento del DSP attraverso una scheda emulatore EZ-ICE inserita in uno degli slot ISA del PC.

Fig. 31: schema della scheda contenente il DSP

Un connettore DC permette di alimentare la scheda utilizzando un alimentatore di tensione costante a 9 V.

Infine, grazie ad un’opportuna scheda di conversione A/D, è possibile acquisire fino a due segnali elettrici ed elaborarli utilizzando il DSP. Una presa jack stereo permette di acquisire tali segnali.

Attraverso una scheda di conversione D/A e un’uscita jack stereo analoga alla precedente è possibile poi ottenere fino a due segnali elettrici in uscita.
d) **alimentatore di potenza DC AL 862 (Alpha Elettronica):** è un alimentatore duale con limitatore di corrente che permette di ottenere, a partire dalla tensione di rete, da 0 a 30 V DC in uscita. Nel sistema di controllo utilizzato, l’uscita è fissata a 9V per l’alimentazione della scheda DSP;

e) **preamplificatore microfonico** prodotto dalla Mesa, modello R31S;

f) **microfono** a condensatore prodotto dalla RION, modello UC-53A; sensibilità relativa a circuito aperto –25.5 dB, capacità di armatura 12 pF, resistenza di “leakage” $10^{12} \Omega$ (a umidità relativa pari all’85%).

In figura 32 è riportata la curva di calibrazione del microfono, ottenuta sotto le seguenti condizioni di test: frequenza 1000 Hz, tensione di polarizzazione 0 V, pressione 762 mmHg, umidità relativa 42%, temperatura 23°.

Fig. 32: curva di calibrazione del microfono a condensatore
3.3 Algoritmi di controllo

Con riferimento alla figura 33, l’unità di controllo, in generale, è in grado di realizzare il controllo del rumore elaborando un segnale, \(x(n) \), che è proporzionale al regime di rotazione del motore; questo grazie ad algoritmi adattivi che, in funzione di un segnale d'errore prelevato all'uscita della marmitta, \(e(n) \), consentono di minimizzare il segnale acustico all’uscita.

Il segnale d'errore \(e(n) \) è dato dalla somma (corrispondente ad una differenza essendo i due segnali teoricamente in controfase) tra il rumore del motore all'uscita della marmitta e il segnale emesso dagli altoparlanti; \(x(n) \) è il rumore prodotto direttamente dal motore prima di percorrere il tubo di scappamento e di miscelarsi con quello di antirumore.

Fig. 33: schema del banco di prova

In un primo momento si è pensato di utilizzare, come segnale di controllo \(x(n) \), direttamente il rumore presente all’interno del condotto di
scarico prima della marmitta elettronica. Tale soluzione è risultata impraticabile viste le elevatissime temperature presenti nel condotto di scarico; infatti non esistono microfoni in grado di funzionare a tali temperature.

Non essendo possibile prelevare il segnale di rumore \(x(n) \) neanche all’uscita della marmitta elettronica, essendo in quel punto già miscelato con quello di antirumore, è stato scelto come segnale in ingresso al controllore ANC quello generato dalla candela, il quale presenta armoniche alla stessa frequenza di quelle del motore aventi però fase ed ampiezza differenti da quest’ultimo. Di conseguenza, gli altoparlanti di controllo devono emettere un segnale di frequenza uguale a quella della candela, ma con diverse fase ed ampiezza tali che il rumore all’uscita della marmitta sia minimo.

3.3.1. Algoritmo LMS

Il primo algoritmo utilizzato è l’LMS (Last Mean Square). L’LMS consente al sistema si aggiornarsi in tempo reale in base alle variazioni di frequenza del segnale in ingresso mediante la procedura di seguito riportata.

Come da figura 34, la funzione di trasferimento FIR \(W(z) \) filtra il segnale della candela ed i suoi coefficienti sono aggiornati da un algoritmo adattivo LMS.

I coefficienti del filtro adattivo sono aggiornati in base alla relazione:
\[w(n+1) = w(n) + \mu \cdot e(n) \cdot \zeta(n) \]

(38)

dove \(w(n) \) rappresenta il vettore dei coefficienti del filtro al passo \(n \), \(e(n) \) è il segnale di errore, \(\zeta(n) \) rappresenta il vettore dei campioni dell’ingresso (segnale prelevato dalla candela) e \(\mu \) è il parametro di adattamento.

![Schema di controllo LMS](image)

Fig. 34: schema di controllo LMS

Per assicurare la convergenza, \(\mu \) deve soddisfare la condizione:

\[0 < \mu < \left(\frac{2}{\text{potenza totale d’ingresso}} \right) \]

(39)

Per assicurare che \(\mu \) non diventi troppo grande da causare instabilità, può essere scelto un algoritmo LMS normalizzato che utilizza la seguente relazione:
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

\[
\mu = \frac{x}{r + \mathbf{c}^T(n) \cdot \mathbf{c}(n)} \quad (40)
\]

dove \(x \), dimensione dello step normalizzata, è scelta tra 0 e 2 mentre \(r \) è un piccolo termine positivo utilizzato per assicurare che i coefficienti aggiornati non diventino eccessivamente grandi quando \(\mathbf{c}^T(n) \cdot \mathbf{c}(n) \) è temporaneamente piccolo.

3.3.2. Algoritmo FxLMS

Il segnale di antirumore \(y(n) \) uscente dal DSP è modificato da un percorso secondario \(H(z) \) nel canale che collega il DSP al microfono di errore tramite gli altoparlanti di controllo. Il sistema diventa allora quello descritto in Figura 35, dove \(H(z) \) è sconosciuta nonché tempo-variante a causa degli effetti di invecchiamento del sistema e delle variazioni di temperatura.

L’algoritmo LMS è ora espresso nella forma:

\[
\mathbf{w}(n+1) = \mathbf{w}(n) + \mu \cdot \mathbf{e}(n) \cdot \mathbf{c}(n) \cdot \mathbf{h}(n) \quad (41)
\]

dove \(h(n) \) è la risposta impulsiva del percorso secondario \(H(z) \) la quale dovrà essere stimata in quanto sconosciuta.
Assumendo però che $H(z)$ sia tempo-invariante, per la sua stima $S(z)$ può essere utilizzata una tecnica off-line. Al termine di questo procedimento, il modello stimato $S(z)$ può essere utilizzato per il controllo attivo del rumore. Il sistema di controllo che ne segue prende il nome di Filtered-x LMS (figura 36).

In questo caso i coefficienti di $W(z)$ sono aggiornati secondo la seguente equazione:

$$w(n+1) = w(n) + \mu \cdot e(n) \cdot c'(n)$$

(42)

dove
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

\[c'(n) = \sum_{i=0}^{M-1} s_i \cdot c(n-i) \] (43)

mentre \(c'(n) = [c'(n) \; c'(n-1) \; ... \; c'(n-N+1)] \).

I coefficienti \(s_i \) rappresentano la funzione di trasferimento del percorso secondario stimato. Per calcolare il loro valore si può generare tramite DSP un rumore bianco WN utilizzandolo come ingresso di riferimento al filtro adattivo \(S(z) \).

La tecnica di stima di \(S(z) \) è illustrata in figura 37 dove:
mentre il valore iniziale dei coefficienti $s_i(n)$ è scelto uguale a zero all’istante iniziale.

I coefficienti del filtro adattivo $S(z)$ sono poi aggiornati utilizzando l’algoritmo LMS nel modo seguente:

$$s_i(n+1) = s_i(n) + \mu \cdot e'(n) \cdot y(n-i) \quad \text{per } i = 0, \ldots, M-1$$ (45)

Il parametro μ è scelto tale che
$0 < \mu < \frac{1}{M \cdot P_y}$

(46)

dove P_y è la potenza del rumore bianco $y(n)$ e M l’ordine del filtro $S(z)$.

La procedura off-line appena descritta deve essere eseguita per un periodo di circa 10 secondi al termine del quale i coefficienti s_i ottenuti avranno raggiunto il proprio valore a regime e potranno quindi essere utilizzati nel filtro LMS.

3.3.3 Algoritmo RLS

Per l’aggiornamento dei coefficienti del filtro FIR è possibile utilizzare, al posto dell’algoritmo adattivo LMS precedentemente descritto, l’RLS; tale algoritmo valuta ricorsivamente la stima dei minimi quadrati dei coefficienti del filtro FIR, basandosi su segnali d’errore e d’ingresso acquisiti.

L’algoritmo RLS può essere espresso in forma matriciale come:

$$k(n) = \frac{s \cdot Z(n-1) \cdot c(n)}{1 + s \cdot c^T(n) \cdot Z(n-1) \cdot c(n)}$$

$$w(n) = w(n-1) + k(n) \cdot e(n)$$

$$Z(n) = s \cdot (I(n-1) - k(n) \cdot c^T(n)) \cdot Z(n-1)$$

(47)
dove:

c(n) è il vettore dei campioni della candela;
Z(n) è la matrice di correlazione inversa, il cui valore iniziale è fissato uguale a I - \frac{1}{\sigma^2} dove \sigma^2 rappresenta il parametro di stima della varianza dell’ingresso;
\kappa(n) è il vettore dei guadagni;
w(n) è il vettore dei coefficienti del filtro FIR W(z);
s^{-1} è un fattore di pesatura che tiene conto di quanto rapidamente il filtro “dimentica” le informazioni sui campioni precedentemente acquisiti.
Ad esempio, fissare s^{-1} = 1 significa avere a disposizione una memoria infinita. Di solito, 0.95 \leq s^{-1} \leq 1;
I(n) è la matrice identità;
e(n) è l’ultimo campione acquisito del segnale d’errore.

Come si può notare dal confronto con l’algoritmo LMS, l’RLS presenta una maggiore complessità computazionale, conseguentemente sono migliori le prestazioni in termini di attenuazione del segnale d’errore, ma sono maggiori i tempi di calcolo.
3.4 Sistema di sviluppo

Gli algoritmi proposti sono stati sviluppati mediante VISUAL-DSP, un ambiente di sviluppo integrato (IDE) per la realizzazione di applicazioni software specifiche per i DSP 21xxx dell’Analog Devices. L’IDE include l’accesso a tutte le attività necessarie per la creazione ed il debug di progetti DSP, incluse:

- editor di testo, che permette di creare e modificare file sorgente;
- definizione e gestione progetti all’interno dell’IDE, specificando i file che il processore SHARC, una volta assemblati, andrà ad eseguire;
- accesso e gestione del processore SHARC attraverso finestre di dialogo che permettono di specificare le varie opzioni possibili;
- compilazione dei file di progetto nei linguaggi C ed Assembler;
- analisi del comportamento del software progettato step by step;
- debug dei progetti;
- caricamento nel processore delle applicazioni progettate.
3.5 Listati dei programmi

3.5.1 Algoritmo LMS

/* ADSP-2106x System Register bit definitions */
#include <def21060.h>
#include <21060.h>
#include <signal.h>
#include <sport.h>
#include <macros.h>
#include <math.h>
#include <filters.h>
#include <trans.h>
#include <complex.h>

/* DMA Chain pointer bit definitions */
#define CP_PCI 0x2000 // Program-Controlled Interrupts bit
#define CP_MAF 0x1ffff // Valid memory address field bits

#define SetIOP(addr, val) (* (int *) addr) = (val)
#define GetIOP(addr) (* (int *) addr)

#define mu 0.00000000000007
#define num 61

float candela[num];
float y;
float Q[num];

/***/
#define SZ_regs_1847 16
int regs_1847[SZ_regs_1847] = {
/* Note that the MCE bit is maintained throughout initial programming to hold off premature autocalibration. */
0xc000, /* index 0 - left input control */
0xc100, /* index 1 - right input control */
0xc280, /* index 2 - left aux 1 input control */
0xc380, /* index 3 - right aux 1 input control */
0xc480, /* index 4 - left aux 2 input control */
0xc580, /* index 5 - right aux 2 input control */
0xc600, /* index 6 - left dac control */
}
typedef struct {
 unsigned lpath3; /* for mesh multiprocesssing */
 unsigned lpath2; /* for mesh multiprocesssing */
 unsigned lpath1; /* for mesh multiprocesssing */
 unsigned db; /* General purpose register */
 unsigned gp; /* General purpose register */
 unsigned** cp; /* Chain Pointer to next TCB */
 unsigned c; /* Count register */
 int im; /* Index modifier register */
 unsigned * ii; /* Index register */
} _tcb;

_tcb rx_tcb = {0, 0, 0, 0, 0, 0, 3, 1, 0}; // receive tcb
_tcb tx_tcb = {0, 0, 0, 0, 0, 0, 3, 1, 0}; // transmit tcb

int cmd_blk[8]; /* command block */

static int xmit_count;
static int * xmit_ptr;

static int source;
static int filter;
static int old_source;
static int old_filter;

/** Serial port transmit DMA complete */
void spt0_asserted(int sig_num)

{
 // Check if there are more commands left to transmit.
 if(xmit_count)
 {
 /* If so, put the command into the transmit buffer and
 update count.*/
 tx_buf[0] = *xmit_ptr++;
 xmit_count--;
 }
}

 /**
 /* Periodic timer interrupt */
/**/
void timer_hi_prior(int sig_num)
{
 float valoreattuale;
 int p,i;
 float rumore;

 rumore=0.25*rx_buf[2]; //segnale d’errore acquisito
 valoreattuale=rx_buf[1]; //segnale candela acquisito
 for (p=num-1;p>0;p--) {
 candela[p]=candela[p-1];}
 candela[0]=valoreattuale;

 y=0;
 for (p=0;p<=num-1;p++) {
 y=y+candela[p]*Q[p];} //y = segnale candela filtrato
 if (fabs(y>16000.0)) //evita la saturazione
 y=y*0.00001;

 tx_buf[1]=y; //invia un campione in uscita
 for (i=0;i<=num-1;i++) {
 Q[i]=Q[i]+mu*rumore*candela[i];} //algoritmo LMS
}

 /**
 void setup_sports (void)
{/**/

}
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

/* Multichannel communications setup */
sport0_iop.mtcs = 0x00070007; /* transmit on
words 0,1,2,16,17,18 */
sport0_iop.mrcs = 0x00070007; /* receive on
words 0,1,2,16,17,18 */
sport0_iop.mtccs = 0x00000000; /* no companding
on transmit */
sport0_iop.mrccs = 0x00000000; /* no companding
on receive */

SetIOP(STCTL0, 0x001c00f2);
SetIOP(SRCTL0, 0x1f8c20f2);
interrupt(SIG_SPT0I, spt0_asserted);

/* Set up Transmit Transfer Control Block for chained DMA */
tax_tcb.ii = tx_buf; /* DMA source buffer address */
tax_tcb.cp = &tax_tcb.ii; /* define ptr to next TCB (point to self) */
SetIOP(CP2, (((int)&tax_tcb.ii) & CP_MAF) | CP_PCI);
/* define ptr to current TCB (kick off DMA) */
/* (SPORT0 transmit uses DMA ch 2) */

/* Set up Receive Transfer Control Block for chained DMA */
tr_tcb.ii = rx_buf; /* DMA destination buffer address */
tr_tcb.cp = &tr_tcb.ii; /* define ptr to next TCB (point to self) */
SetIOP(CP0, (((int)&tr_tcb.ii) & CP_MAF) | CP_PCI);
/* define ptr to current TCB (kick off DMA) */
/* (SPORT0 receive uses DMA ch 0) */
}

void send_1847_config_cmds(void)
{
 // Set up pointer and counter to transmit commands.
xmit_ptr = regs_1847;
xmit_count = SZ_regs_1847;

// Wait for all commands to be transmitted.
while(xmit_count)
 idle();
 return;
}

/**/
void init_21k(void)
{
 // Initialize pointer and counter to transmit commands.
 xmit_count = 0;
 xmit_ptr = regs_1847;

 // Enable interrupt nesting.
 asm("#include <def21060.h>");
 asm("bit set model NESTM;");

 // Turn flag LEDs off.
 set_flag(SET_FLAG2, SET_FLAG);
 return;
}

/**/
void main (void)
{
 int i;
 int x;

 // Initialize some SHARC registers.
 init_21k();

 // Reset the Codec.
 set_flag(SET_FLAG0, CLR_FLAG); /* Put CODEC into
 RESET */
 for(x=0;x<0x000f;x++);
 set_flag(SET_FLAG0, SET_FLAG); /* Release CODEC
from RESET */

 // Configure SHARC serial port.
 setup_sports();
// Send setup commands to CODEC.
send_1847_config_cmds();

// Turn on all LEDs.
set_flag(SET_FLAG2, CLR_FLAG);

// Turn on the timer.
// Disable timer and set rate to 4 Hz.
timer_off();
timer_set(10000, 10000);
timer_on();
y=0.0;
for (i=0; i<=num-1; i++) { candela[i]=0; }
for (i=0; i<=num-1; i++) { Q[i]=0; }
interrupt(SIG_TMZ0, timer_hi_prior);

// Loop forever.
for (;;) {
 idle();
}

3.5.2 Algoritmo FxLMS

/* ADSP-2106x System Register bit definitions */
#include <def21060.h>
#include <21060.h>
#include <signal.h>
#include <sport.h>
#include <macros.h>
#include <math.h>
#include <filters.h>
#include <trans.h>
#include <complex.h>

 /* DMA Chain pointer bit definitions */
#define CP_PCI 0x20000 // Program-Controlled Interrupts bit
#define CP_MAF 0x1ffff // Valid memory address field bits
#define SetIOP(addr, val) (* (int *) addr) = (val)
#define GetIOP(addr) (* (int *) addr)
#define mu1 0.0000000000004
#define mu 0.00000000000007
#define num 61
#define tt 0.00025
float candela[num];
float y,c1,t,e,wn,wf,e1;
float Q[num],S[num],cand[num],bianco[num];

/***/
#define SZ_regs_1847 16
int regs_1847[SZ_regs_1847] = {
 /* Note that the MCE bit is maintained throughout initial
 programming to hold off premature autocalibration. */
 0xc000, /* index 0 - left input control */
 0xc100, /* index 1 - right input control */
 0xc280, /* index 2 - left aux 1 input control */
 0xc380, /* index 3 - right aux 1 input control */
 0xc480, /* index 4 - left aux 2 input control */
 0xc580, /* index 5 - right aux 2 input control */
 0xc600, /* index 6 - left dac control */
 0xc700, /* index 7 - right dac control */
 0xc850, /* index 8 - data format */
 0xc909, /* index 9 - interface configuration */
 0xca00, /* index 10 - pin control */
 0xcb00, /* index 11 - no register */
 0xcc40, /* index 12 - miscellaneous information */
 0xcd00, /* index 13 - digital mix control */
 0xce00, /* index 14 - no register */
 0x8f00}; /* index 15 - no register */

int rx_buf[3]; /* receive buffer */
int tx_buf[3] = {0xcc40, 0, 0}; /* transmit buffer */

/* DMA chaining Transfer Control Blocks */
typedef struct {
 unsigned lpath3; /* for mesh multiprocessing */
 unsigned lpath2; /* for mesh multiprocessing */
 unsigned lpath1; /* for mesh multiprocessing */
 unsigned db; /* General purpose register */
 unsigned gp; /* General purpose register */
 unsigned** cp; /* Chain Pointer to next TCB */
}
unsigned c; /* Count register */
int im; /* Index modifier register */
unsigned * ii; /* Index register */
} tcb;

_tcb rx_tcb = {0, 0, 0, 0, 0, 0, 3, 1, 0}; // receive tcb
_tcb tx_tcb = {0, 0, 0, 0, 0, 0, 3, 1, 0}; // transmit tcb
int cmd_blk[8]; /* command block */

static int xmit_count;
static int * xmit_ptr;
static int source;
static int filter;
static int old_source;
static int old_filter;

/***
/* Serial port transmit DMA complete */
/***/
void spt0_asserted(int sig_num)
{
 // Check if there are more commands left to transmit.
 if(xmit_count)
 {
 /* If so, put the command into the transmit buffer and up-
 * date count.*/
 tx_buf[0] = *xmit_ptr++;
 xmit_count--;
 }
}

/***
/* Periodic timer interrupt */
/***/
void timer_hi_prior(int sig_num)
{
 float valoreattuale;
 int p,i;
 float rumore;
 t=t+tt; //variabile tempo
if (t<15) /*Inizio del calcolo della funzione
di trasferimento*/
e=0.25*rx_buf[2];
wn=rand()*0.0001; //generazione rumore bianco
for (p=num-1;p>0;p--) {
 bianco[p]=bianco[p-1];}
bianco[0]=wn;

wf=0;
for (p=0;p<=num-1;p++) {
 wf=wf+bianco[p]*S[p];} //wf = rumore bianco filtrato

tax_buf[1]=wn;
e1=(e-wf);
for (i=0;i<=num-1;i++) {
 S[i]=S[i]+mu1*e1*bianco[i];} //algoritmo LMS
}
else { //algoritmo FxLMS
 rumore=0.25*rx_buf[2]; //acquisizione segnale d’errore
 valoreattuale=rx_buf[1]; //acquisizione segnale candela
 for (p=num-1;p>0;p--) {
 candela[p]=candela[p-1];}
candela[0]=valoreattuale;

 y=0;
 for (p=0;p<=num-1;p++) {
 y=y+candela[p]*Q[p];} /*y = segnale candela attraverso
il filtro FIR principale*/

 if (fabs(y>16000.0)) //evita la saturazione
 y=y*0.01;

tax_buf[1]=y;
c1=0;

 for (p=0;p<=num-1;p++) {
 c1=c1+candela[p]*1000*S[p];} /*c1 = segnale candela filtra-
to dalla funzione di trasferimento*/

 for (p=num-1;p>0;p--) {

Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

cand[p]=cand[p-1];
cand[0]=c1;
for (i=0;i<=num-1;i++) {
 Q[i]=Q[i]+mu*rumore*cand[i];} //algoritmo LMS
}

void setup_sports (void)
{
 /* Configure SHARC serial port SPORT0 */
 /* Multichannel communications setup */
 sport0_iop.mtcs = 0x00070007; /* transmit on
 words 0,1,2,16,17,18 */
 sport0_iop.mrcs = 0x00070007; /* receive on
 words 0,1,2,16,17,18 */
 sport0_iop.mtccs = 0x00000000; /* no companding
 on transmit */
 sport0_iop.mrccs = 0x00000000; /* no companding
 on receive */
 SetIOP(STCTL0, 0x001c00f2);
 SetIOP(SRCTL0, 0x1f8c20f2);
 interrupt(SIG_SPT0I, spt0_asserted);
 /* Set up Transmit Transfer Control Block for chained DMA */
 tx_tcb.ii = tx_buf; /* DMA source buffer address */
 tx_tcb.cp = &tx_tcb.ii; /* define ptr to next TCB (point to self) */
 SetIOP(CP2, (((int)&tx_tcb.ii) & CP_MAF) | CP_PCI);
 /* define ptr to current TCB (kick off DMA) */
 /* (SPORT0 transmit uses DMA ch 2) */
 /* Set up Receive Transfer Control Block for chained DMA */
 rx_tcb.ii = rx_buf; /* DMA destination buffer address */
 rx_tcb.cp = &rx_tcb.ii; /* define ptr to next TCB (point to self) */
SetIOP(CP0, (((int)&rx_tcb.ii) & CP_MAF) | CP_PCI);
 /* define ptr to current TCB (kick off DMA) */
 /* (SPORT0 receive uses DMA ch 0) */
}

void send_1847_config_cmds(void)
{
 // Set up pointer and counter to transmit commands.
 xmit_ptr = regs_1847;
 xmit_count = SZ_regs_1847;

 // Wait for all commands to be transmitted.
 while(xmit_count)
 {
 idle();
 return;
 }
}

void init_21k(void)
{
 // Initialize pointer and counter to transmit commands.
 xmit_count = 0;
 xmit_ptr = regs_1847;

 // Enable interrupt nesting.
 asm("#include <def21060.h>");
 asm("bit set mode1 NESTM;");

 // Turn flag LEDs off.
 set_flag(SET_FLAG2, SET_FLAG);

 return;
}

void main (void)
{
 int i;
 int x;

 // Initialize some SHARC registers.
 init_21k();
// Reset the Codec.
set_flag(SET_FLAG0, CLR_FLAG); /* Put CODEC into
RESET */
for(x=0;x<0x000f;x++);
set_flag(SET_FLAG0, SET_FLAG); /* Release CODEC
from RESET */

// Configure SHARC serial port.
setup_sports();

// Send setup commands to CODEC.
send_1847_config_cmds();

// Turn on all LEDs.
set_flag(SET_FLAG2, CLR_FLAG);

// Turn on the timer.
// Disable timer and set rate to 4 Hz.
timer_off();
timer_set(10000, 10000);
timer_on();
y=0.0;

for(i=0;i<=num-1;i++) { S[i]=0; }
for(i=0;i<=num-1;i++) { candela[i]=0; }
for(i=0;i<=num-1;i++) { cand[i]=0; }
for(i=0;i<=num-1;i++) { Q[i]=0; }
 interrupt(SIG_TMZ0, timer_hi_prior);
// Loop forever.
for(;;) {
 idle();
};
3.5.3 Algoritmo RLS

/* ADSP-2106x System Register bit definitions */
#include <def21060.h>
#include <21060.h>
#include <signal.h>
#include <sport.h>
#include <macros.h>
#include <math.h>
#include <filters.h>
#include <trans.h>
#include <complex.h>

/* DMA Chain pointer bit definitions */
#define CP_PCI 0x20000 //Program-Controlled Interrupts bit
#define CP_MAF 0x1ffff // Valid memory address field bits
#define SetIOP(addr, val) (* (int *) addr) = (val)
#define GetIOP(addr) (* (int *) addr)

#define s 1.03
#define num 4
#define sig 0.01

float candela[num];
float y,e,u;
int i,j;
float W[num],Z[num][num];
/******************
#define SZ_regs_1847 16
int reg_ptr[1847][SZ_regs_1847] = {
 /* Note that the MCE bit is maintained throughout initial
 programming to hold off premature autocalibration. */
 0x000, /* index 0 - left input control */
 0x100, /* index 1 - right input control */
 0x200, /* index 2 - left aux 1 input control */
 0x300, /* index 3 - right aux 1 input control */
 0x400, /* index 4 - left aux 2 input control */
 0x500, /* index 5 - right aux 2 input control */
 0x600, /* index 6 - left dac control */
 0x700, /* index 7 - right dac control */
};
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

0xc850, /* index 8 - data format */
0xc909, /* index 9 - interface configuration */
0xca00, /* index 10 - pin control */
0xcb00, /* index 11 - no register */
0xcc40, /* index 12 - miscellaneous information */
0xcd00, /* index 13 - digital mix control */
0xce00, /* index 14 - no register */
0x8f00}; /* index 15 - no register */

int rx_buf[3]; /* receive buffer */
int tx_buf[3] = {0xcc40, 0, 0}; /* transmit buffer */

/* DMA chaining Transfer Control Blocks */
typedef struct {
 unsigned lpath3; /* for mesh multiprocessing */
 unsigned lpath2; /* for mesh multiprocessing */
 unsigned lpath1; /* for mesh multiprocessing */
 unsigned db; /* General purpose register */
 unsigned gp; /* General purpose register */
 unsigned** cp; /* Chain Pointer to next TCB */
 unsigned c; /* Count register */
 int im; /* Index modifier register */
 unsigned * ii; /* Index register */
} _tcb;

_tcb rx_tcb = {0, 0, 0, 0, 0, 0, 3, 1, 0}; // receive tcb
_tcb tx_tcb = {0, 0, 0, 0, 0, 0, 3, 1, 0}; // transmit tcb

int cmd_blk[8]; /* command block */

static int xmit_count;
static int * xmit_ptr;

static int source;
static int filter;
static int old_source;
static int old_filter;

/****************************/
/* Serial port transmit DMA complete */
/****************************/
void spt0_asserted(int sig_num)
{
// Check if there are more commands left to transmit.
if(xmit_count)
{
 // If so, put the command into the transmit buffer
 and update count.
 tx_buf[0] = *xmit_ptr++;
 xmit_count--;
}

/***
/* Periodic timer interrupt */
/***/
void timer_hi_prior(int sig_num)
{
 int p;
 float x[num],k[num];

e=rx_buf[2]; //acquisizione segnale d’errore
u=rx_buf[1]; //acquisizione segnale candela
for (p=num-1;p>0;p--) { // creazione vettore c
 candela[p]=candela[p-1];};
 candela[0]=u;

 y=0;
 for (p=0;p<=num-1;p++) { //y = segnale candela filtrato
 y=y+candela[p]*W[p];};
 tx_buf[1]=y;

 for (p=0;p<=num-1;p++) {
 x[p]=0;};

 for (i=0;i<=num-1;i++) {
 for(j=0;j<=num-1;j++) { //x = s*Z[][]*c[]
 x[i]=x[i]+s*(Z[i][j]*candela[j]);
 };

 for (i=0;i<=num-1;i++) {
 k[i]=x[i]/(1+candela[i]*x[i]); }; // calcolo vettore k

 for (i=0;i<=num-1;i++) {
 for(j=0;j<=num-1;j++) { //calcolo matrice Z[][]
 };

 };

 };

}
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

\[
Z[i][j] = s \cdot Z[i][j] - k[i] \cdot x[j];
\]

for (i=0; i<=num-1; i++) {
 W[i] = W[i] + k[i] * e; // aggiornamento coefficienti filtro FIR
}

/***/
void setup_sports (void)
{
 /* Configure SHARC serial port SPORT0 */
 /* Multichannel communications setup */
 sport0_iop.mtcs = 0x00070007; /* transmit on
 words 0,1,2,16,17,18 */
 sport0_iop.mrcs = 0x00070007; /* receive on
 words 0,1,2,16,17,18 */
 sport0_iop.mtccs = 0x00000000; /* no companding
 on transmit */
 sport0_iop.mrccs = 0x00000000; /* no companding
 on receive */

 SetIOP(STCTL0, 0x001c00f2);
 SetIOP(SRCTL0, 0x1f8c20f2);
 interrupt(SIG_SPT0I, spt0_asserted);

 /* Set up Transmit Transfer Control Block for chained
 DMA */
 tx_tcb.ii = tx_buf; /* DMA source buffer ad-
 dress */
 tx_tcb.cp = &tx_tcb.ii; /* define ptr to next TCB
 (point to self) */
 SetIOP(CP2, (((int)&tx_tcb.ii) & CP_MAF) | CP_PCI);
 /* define ptr to current TCB (kick off DMA) */
 /* (SPORT0 transmit uses DMA ch 2) */

 /* Set up Receive Transfer Control Block for chained
 DMA */
 rx_tcb.ii = rx_buf; /* DMA destination buffer
 address */
 rx_tcb.cp = &rx_tcb.ii; /* define ptr to next TCB
 (point to self) */
SetIOP(CP0, (((int)&rx_tcb.ii) & CP_MAF) | CP_PCI);
/* define ptr to current TCB (kick off DMA) */
/* (SPORT0 receive uses DMA ch 0) */
}
/***/
void send_1847_config_cmds(void)
{
 // Set up pointer and counter to transmit commands.
 xmit_ptr = regs_1847;
 xmit_count = SZ_regs_1847;

 // Wait for all commands to be transmitted.
 while(xmit_count)
 {
 idle();
 return;
 }
}
/***/
void init_21k(void)
{
 // Initialize pointer and counter to transmit commands.
 xmit_count = 0;
 xmit_ptr = regs_1847;

 // Enable interrupt nesting.
 asm("#include <def21060.h>");
 asm("bit set model NESTM;");

 // Turn flag LEDs off.
 set_flag(SET_FLAG2, SET_FLAG);

 return;
}
/***/
void main (void)
{
 int i;
 int x;

 // Initialize some SHARC registers.
 init_21k();
// Reset the Codec.
set_flag(SET_FLAG0, CLR_FLAG); /* Put CODEC into
RESET */
for(x=0;x<0x000f;x++);
set_flag(SET_FLAG0, SET_FLAG); /* Release CODEC
from RESET */

// Configure SHARC serial port.
setup_sports();

// Send setup commands to CODEC.
send_1847_config_cmds();

// Turn on all LEDs.
set_flag(SET_FLAG2, CLR_FLAG);

// Turn on the timer.
// Disable timer and set rate to 4 Hz.
timer_off();
timer_set(10000, 10000);
timer_on();
y=0.0;

for(i=0;i<=num-1;i++) { candela[i]=0;};
for(i=0;i<=num-1;i++) { W[i]=0;};
for(i=0;i<=num-1;i++) {
 for(j=0;j<=num-1;j++) {
 if (i!=j)
 Z[i][j]=0;
 else
 Z[i][j]=sig;
 };
};
interrupt(SIG_TMZ0, timer_hi_prior);
// Loop forever.
for(;;)
{
 idle();
};
}
4 Messa a punto sul banco di prova e verifiche sperimentali

4.1 Verifiche sperimentali

La marmitta elettronica ed il sistema di controllo sono stati collegati con il banco di prova (vedere Capitolo 1) allo scopo di calibrare e tarare l’intero sistema e verificarne le prestazioni.

A tale proposito è stata condotta una campagna di misure fonometriche nelle immediate vicinanze della sezione terminale della marmitta elettronica. Le misure sono state effettuate in condizioni di sistema di controllo attivo acceso e sistema di controllo spento, in modo da valutare la riduzione di livello di rumore introdotto dal sistema di controllo.

Una prima serie di misure (vedere paragrafo 4.4) è stata effettuata assumendo il rumore prodotto dal go-kart ad un segnale acustico avente una forma triangolare.

Una seconda serie di misure (vedere paragrafo 4.5) è stata invece, condotta inviando al banco di prova il rumore del go-kart registrato.

4.2 Strumentazione fonometrica

Il fonometro utilizzato è l’Investigator modello 2260 prodotto dalla Bruel & Kjaer avente le seguenti caratteristiche:

- conformità alle norme IEC651 (1979), IEC1260 (1995), ANSI S1.4 (1983) e ANSI S1.11 (1986);

- conformità agli standard ISO, DIN, BS, NBE, SS, Sia, ONORM, NF,
UNI, ASTM e NEN;
– equipaggiato con microfono a condensatore prepolarizzato tipo 4189, sensibilità nominale –26 dB ±1.5 dB riferito a 1 V/Pa, capacità 14 pF (a 250 Hz);
– livello di rumore “inherent” (combinazione tra rumore elettrico e rumore termico a 20°C) pari a 2 dB a 1 KHz, 8 dB a 10 KHz (bande in terzo d’ottava) e 6 dB a 1 KHz, 12 dB a 8 KHz (bande d’ottava);
– dinamica di misura pari a 90 dB (bande d’ottava ed in terzo d’ottava) e a 80 dB (ponderazione A).

4.3 Modalità di misura

La campagna di misure fonometriche è stata condotta posizionando il microfono del fonometro a 50 cm dall’uscita della marmitta elettronica e a 45° dal suo asse centrale, in riferimento alla norma ISO 5130 del 1982 (vedere figura 38). Sono state effettuate le misure per un periodo di 10 s, all’interno del quale sono stati valutati il livello equivalente continuo lineare e quello ponderato A su tutta la banda acustica del rumore prodotto in uscita alla marmitta elettronica; inoltre, è stato analizzato lo spettro del rumore valutando il Leq per ciascuna banda in terzi d’ottava.
La prima serie di misure è stata condotta utilizzando un’onda triangolare inviata sia all’amplificatore di rumore, sia al DSP. Così facendo il DSP può disporre di un segnale di sincronismo la cui funzione è equiva-
lente al segnale della candela nel funzionamento definitivo. Il segnale è
stato generato mediante un generatore di funzioni.

La frequenza è stata variata in modo da verificare la capacità del
DSP di regolare automaticamente il segnale di antirumo re, al variare della frequenza del rumore.

Lo schema a blocchi del sistema di controllo utilizzato nelle prove sperimentali è descritto in figura 39.

![Diagrama](image)

Fig. 39: schema a blocchi del sistema di controllo utilizzato nella prima serie di misure

In tabella 1 sono riportate le prove sperimentali effettuate ed i grafici dello spettro del rumore ottenuto in uscita dalla marmitta elettronica e acquisito mediante il fonometro.

Analizzando gli spettri in bande in terzi di ottava ottenuti generando un’onda triangolare di frequenza fondamentale 200 Hz, si nota come l’uso degli algoritmi adattivi riduca di circa 5 dB il Leq ponderato A rispetto al caso in cui il sistema di controllo è spento. L’LMS permette un’attenuazione leggermente superiore (+0.6 dB) rispetto all’FxLMS, ma
risulta notevolmente più lento.

Il parametro di adattamento è stato scelto, sia nell’LMS che nell’FxLMS, cercando di raggiungere un compromesso tra velocità di convergenza e stabilità; si è verificato come, trascurando gli effetti della funzione di trasferimento del percorso secondario (algoritmo LMS), si ottiene una convergenza molto lenta. Questo fattore fa sì che l’algoritmo LMS funzioni solo a basse frequenze (anche a 300 Hz si sono riscontrate instabilità a meno di rendere la convergenza ancora più lenta) e, anche nell’intorno dei 200 Hz, riesca a seguire con difficoltà transitori di variazione della frequenza fondamentale dell’onda triangolare.

L’algoritmo FxLMS, invece, riesce ad inseguire fedelmente le variazioni di frequenza dell’ingresso; inoltre permette di ottenere significative attenuazioni del rumore prodotto in uscita anche a frequenze superiori a 200 Hz.

Si nota come, nel caso dell’FxLMS, anche a 1000 Hz si ottiene una buona riduzione del Leq; per contro sono introdotte componenti spettrali a più alte frequenze che provocano una riduzione del Leq totale di appena 1.6 dB.

In generale, al crescere della frequenza, le componenti spettrali, dovute principalmente al rumore di quantizzazione proprio della scheda di conversione D/A in uscita al DSP, diventano sempre più significative; si è quindi cercato di attenuarle introducendo un condensatore in uscita alla scheda DSP.
Tabella 1: Risultati della prima serie di misure

<table>
<thead>
<tr>
<th>Frequenza Fondamentale</th>
<th>Algoritmo di controllo utilizzato</th>
<th>Grafico spettro del rumore in uscita</th>
<th>Riduzione Leq,A ottenuta</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 Hz</td>
<td>No Controllo</td>
<td>Figura 40</td>
<td>-</td>
</tr>
<tr>
<td>200 Hz</td>
<td>LMS</td>
<td>Figura 41</td>
<td>5.6 dB</td>
</tr>
<tr>
<td>200 Hz</td>
<td>FxLMS</td>
<td>Figura 42</td>
<td>5 dB</td>
</tr>
<tr>
<td>300 Hz</td>
<td>No Controllo</td>
<td>Figura 43</td>
<td>-</td>
</tr>
<tr>
<td>300 Hz</td>
<td>FxLMS</td>
<td>Figura 44</td>
<td>7 dB</td>
</tr>
<tr>
<td>400 Hz</td>
<td>No Controllo</td>
<td>Figura 45</td>
<td>-</td>
</tr>
<tr>
<td>400 Hz</td>
<td>FxLMS</td>
<td>Figura 46</td>
<td>4.6 dB</td>
</tr>
<tr>
<td>500 Hz</td>
<td>No Controllo</td>
<td>Figura 47</td>
<td>-</td>
</tr>
<tr>
<td>500 Hz</td>
<td>FxLMS</td>
<td>Figura 48</td>
<td>8.2 dB</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>No Controllo</td>
<td>Figura 49</td>
<td>-</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>FxLMS</td>
<td>Figura 50</td>
<td>1.6 dB</td>
</tr>
</tbody>
</table>
A frequenze superiori ai 1000 Hz, anche l’algoritmo FxLMS non permette di ottenere risultati significativi poiché il DSP non riesce ad inseguire fedelmente le rapide variazioni del segnale d’ingresso; ad alte frequenze è comunque possibile ridurre facilmente l’entità del rumore prodotto attraverso metodi di tipo passivo.

In seguito, si è cercato di realizzare un controllo adattivo basato sull’algoritmo RLS poiché quest’ultimo, in teoria, dovrebbe garantire migliori prestazioni; purtroppo, il carico computazionale di tale algoritmo è notevolmente superiore a quello dell’FxLMS. Infatti, utilizzando un filtro FIR a sessantuno coefficienti, si ottengono intervalli di campionamento circa venti volte superiori a quelli garantiti dall’FxLMS.

Anche riducendo il numero dei coefficienti del filtro fino a quattro, l’RLS risulta essere più lento di circa il doppio rispetto all’FxLMS; questo non permette di inseguire il segnale di rumore neanche a basse frequenze utilizzando le schede DSP attualmente a disposizione.
Fig. 40: spettro con segnale d’ingresso a 200 Hz - senza controllo

Fig. 41: spettro con segnale d’ingresso a 200 Hz - controllo LMS
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

Fig. 42: spettro con segnale d’ingresso a 200 Hz - controllo FxLMS

Fig. 43: spettro con segnale d’ingresso a 300 Hz – senza controllo
Fig. 44: spettro con segnale d’ingresso a 300 Hz – controllo FxLMS

Fig. 45: spettro con segnale d’ingresso a 400 Hz – senza controllo
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

Fig. 46: spettro con segnale d’ingresso a 400 Hz – controllo FxLMS

Fig. 47: spettro con segnale d’ingresso a 500 Hz – senza controllo
Fig. 48: spettro con segnale d’ingresso a 500 Hz – controllo FxLMS

Fig. 49: spettro con segnale d’ingresso a 1000 Hz – senza controllo
La seconda serie di misure è stata condotta utilizzando come segnale di rumore il segnale registrato del go-kart e come segnale di sincronismo il segnale registrato della candela (vedere Capitolo 3).

I parametri impiegati negli algoritmi LMS, FxLMS e RLS relativi alla prima serie di misure sono risultati inadeguati a tale applicazione. Infatti, la seconda serie di misure ha consentito di verificare che il sistema di controllo produce un’attenuazione del rumore solamente nella componente principale.
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi
5. Verifiche sperimentali sul prototipo di marmitta elettronica ed ottimizzazioni

5.1 Ottimizzazioni: modifiche sul prototipo di marmitta elettronica per motore a due tempi

La campagna di misure effettuata nelle immediate vicinanze della sezione terminale della marmitta elettronica, in condizioni di sistema di controllo attivo acceso e spento, utilizzando come segnale di rumore il segnale registrato del go-kart e come segnale di sincronismo il segnale registrato della candela, ha consentito di verificare che il sistema di controllo produce un’attenuazione del rumore solamente nella componente principale. Si è osservato inoltre che alcuni algoritmi, particolarmente potenti in termini di calcolo, non sono applicabili per la limitata velocità di elaborazione del DSP impiegato.

Come mostrato in figura 51, la marmitta elettronica è stata installata nel condotto di scarico del go-kart in serie alla marmitta già in dotazione al mezzo e non direttamente al collettore di scarico del motore poiché la marmitta in dotazione svolge una funzione non solo acustica di attenuazione del rumore, ma anche necessaria al ciclo di funzionamento del motore stesso.

Avendo osservato che il segnale prelevato dall’accensione (candela) non è in sincronia con il segnale di rumore prodotto dal motore, sono state apportate alla marmitta elettronica le modifiche evidenziate in figura 52.
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

Fig. 51: installazione della marmitta elettronica nel condotto di scarico del go-kart

Fig. 52: modifiche apportate alla marmitta elettronica per motore a due tempi
A monte e a valle della marmitta sono stati inseriti due tubicini di lunghezza 36 mm e diametro interno 8 mm che consentono l’inserimento di due microfoni: il microfono a monte della marmitta elettronica preleva il segnale di riferimento, mentre quello a valle rileva il segnale di errore; in questo modo si ottiene un segnale di riferimento sincronizzato con il rumore prodotto dal motore ed emesso dal condotto di scarico del go-kart.

Con le modifiche apportate, sono stati ottenuti miglioramenti delle prestazioni del sistema in termini di riduzione del rumore sulla sola componente principale e non sulle altre bande di frequenza. Ciò è dovuto al fatto che le emissioni acustiche del go-kart sono caratterizzate da livelli di potenza estremamente elevati e da distribuzioni spettrali rapidamente variabili con il regime di rotazione.

Si è allora pensato di testare il prototipo di marmitta elettronica su motori a due tempi di altro genere, le cui emissioni acustiche siano caratterizzate da livelli di potenza minori e da variazioni dello spettro più lente.

5.2 Verifiche sperimentali sul prototipo di marmitta elettronica applicata al condotto di scarico di un comune motociclo

Il prototipo di marmitta elettronica è stato applicato al condotto di scarico di un motociclo “BRAVO” della Piaggio, come mostrato nella foto di figura 53.

La marmitta elettronica ed il sistema di controllo sono stati collegati allo scopo di calibrare, tarare l’intero sistema e verificarne le prestazioni.
A tale proposito è stata condotta una campagna di misure fonometriche nelle vicinanze della sezione terminale della marmitta elettronica, con la strumentazione fonometrica già descritta nel paragrafo 4.2.

Le misure sono state effettuate in condizioni di sistema di controllo attivo acceso e sistema di controllo spento, in modo da valutare la riduzione di livello di rumore introdotto dal sistema di controllo.
5.3 Modalità di misura

La campagna di misure fonometriche è stata condotta posizionando il microfono del fonometro nei seguenti punti di misura (vedere figura 54):

- **Punto A** - a 50 cm dall’uscita della marmitta elettronica e lungo il suo asse centrale;
- **Punto B** - a 50 cm dall’uscita della marmitta elettronica e a 45° a sinistra dal suo asse centrale;
- **Punto C** - a 50 cm dall’uscita della marmitta elettronica e a 45° a destra dal suo asse centrale;
- **Punto D** - ad 1 m dall’uscita della marmitta elettronica e lungo il suo asse centrale;
- **Punto E** - ad 1 m dall’uscita della marmitta elettronica e a 45° a sinistra dal suo asse centrale;
- **Punto F** - ad 1 m dall’uscita della marmitta elettronica e a 45° a destra dal suo asse centrale;
- **Punto G** - a 2 m dall’uscita della marmitta elettronica e lungo il suo asse centrale;
- **Punto H** - a 2 m dall’uscita della marmitta elettronica e a 45° a sinistra dal suo asse centrale;
- **Punto I** - a 2 m dall’uscita della marmitta elettronica e a 45° a destra dal suo asse centrale;
- **Punto L** - a 5 m dall’uscita della marmitta elettronica e lungo il suo
asse centrale;
- **Punto M** - a 5 m dall’uscita della marmitta elettronica e a 45° a sini-
stra dal suo asse centrale;
- **Punto N** - a 5 m dall’uscita della marmitta elettronica e a 45° a destra
dal suo asse centrale.

Le misure suddette sono state effettuate posizionando il microfono
del fonometro ad un’altezza di 35 cm da terra; in riferimento alla norma
ISO 5130 del 1982, sono state eseguite due misure posizionando il micro-
fono del fonometro a 50 cm dall’uscita della marmitta elettronica e a 45°
dal suo asse centrale (punti B e C di figura 54).

![Diagram](image)

Fig. 54: *posizione dei punti di misura*
Sono state effettuate le misure per un periodo di 10 s all’interno del quale è stato valutato il livello equivalente continuo lineare e quello ponderato A del rumore prodotto in uscita alla marmitta elettronica; inoltre, è stato analizzato lo spettro del rumore valutando il Leq per ciascuna banda in terzi d’ottava.

Per limitare il contributo del rumore proveniente dal motore, la parte anteriore del motociclo è stata isolata dalla marmitta.

5.4 Misure fonometriche

La campagna di misure fonometriche è stata condotta come mostrato in figura 54: il segnale di riferimento, prelevato mediante un opportuno microfono, è stato inviato in ingresso all’unità di controllo; in questo modo il DSP dispone di un segnale ben sincronizzato con il segnale di errore, rilevato mediante un microfono posto a valle della marmitta elettronica.

L’uscita del DSP, che genera il segnale di antirumore, è stata inviata all’altoparlante di controllo, alloggiato nel corpo della marmitta elettronica.

Le misure sono state effettuate in condizioni di sistema di controllo attivo acceso e sistema di controllo spento, in modo da valutare la riduzione di livello di rumore introdotto dal sistema di controllo.
In tabella 2 sono riportati i valori medi del LAeq e del LLeq per ciascuna misura effettuata in condizioni di sistema di controllo attivo acceso e di sistema di controllo spento; sono inoltre riportate le riduzioni ottenute del LAeq e del LLeq.

Tabella 2: livelli di rumore nei punti di misura: confronto fra sistema di controllo attivo acceso e spento

<table>
<thead>
<tr>
<th>Punto di misura</th>
<th>LLeq con controllo (dB)</th>
<th>LLeq senza controllo (dB)</th>
<th>LAeq con controllo (dBA)</th>
<th>LAeq senza controllo (dBA)</th>
<th>Riduzione LLeq ottenuta (dB)</th>
<th>Riduzione LAeq ottenuta (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93.7</td>
<td>99.2</td>
<td>94.4</td>
<td>96.6</td>
<td>-5.2</td>
<td>-2.2</td>
</tr>
<tr>
<td>B</td>
<td>90.8</td>
<td>97.6</td>
<td>91.2</td>
<td>94.4</td>
<td>-6.8</td>
<td>-3.2</td>
</tr>
<tr>
<td>C</td>
<td>90.7</td>
<td>97.6</td>
<td>91.1</td>
<td>94.0</td>
<td>-6.9</td>
<td>-2.9</td>
</tr>
<tr>
<td>D</td>
<td>92.6</td>
<td>97.0</td>
<td>93.4</td>
<td>94.9</td>
<td>-4.4</td>
<td>-1.5</td>
</tr>
<tr>
<td>E</td>
<td>88.8</td>
<td>95.6</td>
<td>88.3</td>
<td>90.9</td>
<td>-6.8</td>
<td>-2.6</td>
</tr>
<tr>
<td>F</td>
<td>90.1</td>
<td>96.1</td>
<td>90.3</td>
<td>92.5</td>
<td>-6.0</td>
<td>-2.2</td>
</tr>
<tr>
<td>G</td>
<td>83.5</td>
<td>91.0</td>
<td>82.4</td>
<td>86.7</td>
<td>-7.5</td>
<td>-4.3</td>
</tr>
<tr>
<td>H</td>
<td>84.7</td>
<td>92.6</td>
<td>81.8</td>
<td>88.1</td>
<td>-7.9</td>
<td>-6.3</td>
</tr>
<tr>
<td>I</td>
<td>82.5</td>
<td>90.0</td>
<td>81.9</td>
<td>85.4</td>
<td>-7.5</td>
<td>-3.5</td>
</tr>
<tr>
<td>L</td>
<td>78.3</td>
<td>85.9</td>
<td>77.2</td>
<td>81.9</td>
<td>-7.6</td>
<td>-4.7</td>
</tr>
<tr>
<td>M</td>
<td>77.3</td>
<td>84.3</td>
<td>75.7</td>
<td>80.6</td>
<td>-7.0</td>
<td>-4.9</td>
</tr>
<tr>
<td>N</td>
<td>76.8</td>
<td>84.2</td>
<td>73.1</td>
<td>78.1</td>
<td>-7.4</td>
<td>-5.0</td>
</tr>
</tbody>
</table>
In tabella 3 sono riportati i valori del LLeq relativi alla componente principale (250 Hz) per ciascun punto di misura in presenza e assenza del segnale di controllo e le riduzioni ottenute.

Tabella 3: livelli di rumore della componente principale \((f_c=250\text{Hz}) \) nei punti di misura: confronto fra sistema di controllo attivo acceso e spento

<table>
<thead>
<tr>
<th>Punto di Misura</th>
<th>LLeq della componente principale (250 Hz) con controllo (dB)</th>
<th>LLeq della componente principale (250 Hz) senza controllo (dB)</th>
<th>Riduzione LLeq ottenuta (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>73.0</td>
<td>93.0</td>
<td>-20.0</td>
</tr>
<tr>
<td>B</td>
<td>72.4</td>
<td>92.5</td>
<td>-20.1</td>
</tr>
<tr>
<td>C</td>
<td>70.2</td>
<td>90.3</td>
<td>-20.1</td>
</tr>
<tr>
<td>D</td>
<td>75.8</td>
<td>90.0</td>
<td>-14.2</td>
</tr>
<tr>
<td>E</td>
<td>76.7</td>
<td>90.9</td>
<td>-14.2</td>
</tr>
<tr>
<td>F</td>
<td>76.2</td>
<td>91.5</td>
<td>-15.3</td>
</tr>
<tr>
<td>G</td>
<td>74.3</td>
<td>86.9</td>
<td>-12.6</td>
</tr>
<tr>
<td>H</td>
<td>74.7</td>
<td>86.3</td>
<td>-11.6</td>
</tr>
<tr>
<td>I</td>
<td>67.2</td>
<td>84.8</td>
<td>-17.6</td>
</tr>
<tr>
<td>L</td>
<td>65.3</td>
<td>82.3</td>
<td>-17.0</td>
</tr>
<tr>
<td>M</td>
<td>62.2</td>
<td>79.3</td>
<td>-17.1</td>
</tr>
<tr>
<td>N</td>
<td>65.1</td>
<td>80.4</td>
<td>-15.3</td>
</tr>
</tbody>
</table>

Nelle figure 55, 56, …, 78 sono rappresentati gli spettri medi del LLeq per ciascuna misura effettuata.
Fig. 55: spettro del LLeq nel punto A con controllo acceso

Fig. 56: spettro del LLeq nel punto A con controllo spento
Fig. 57: spettro del LLeq nel punto B con controllo acceso

Fig. 58: spettro del LLeq nel punto B con controllo spento
Fig. 59: spettro del LLeq nel punto C con controllo acceso

Fig. 60: spettro del LLeq nel punto C con controllo spento
Fig. 61: spettro del L_{Leq} nel punto D con controllo acceso

Fig. 62: spettro del L_{Leq} nel punto D con controllo spento
Fig. 63: spettro del LLeq nel punto E con controllo acceso

Fig. 64: spettro del LLeq nel punto E con controllo spento
Fig. 65: spettro del L_{Leq} nel punto F con controllo acceso

Fig. 66: spettro del L_{Leq} nel punto F con controllo spento
Fig. 67: spettro del LLeq nel punto G con controllo acceso

Fig. 68: spettro del LLeq nel punto G con controllo spento
Fig. 69: spettro del LLeq nel punto H con controllo acceso

Fig. 70: spettro del LLeq nel punto H con controllo spento
Fig. 71: spettro del L_{10} nel punto I con controllo acceso

Fig. 72: spettro del L_{10} nel punto I con controllo spento
Fig. 73: spettro del LLeq nel punto L con controllo acceso

Fig. 74: spettro del LLeq nel punto L con controllo spento
Fig. 75: spettro del LLeq nel punto M con controllo acceso

Fig. 76: spettro del LLeq nel punto M con controllo spento
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

Fig. 77: spettro del LLeq nel punto N con controllo acceso

Fig. 78: spettro del LLeq nel punto N con controllo spento
5.5 Commenti ai risultati delle misure fonometriche

La campagna di misure fonometriche effettuata nelle immediate vicinanze della sezione terminale della marmitta elettronica, in condizioni di sistema di controllo attivo acceso e spento, ha permesso di valutare la riduzione di livello di rumore ottenuta mediante il sistema di controllo.

Dall’analisi degli spettri in bande in terzi di ottava ottenuti in condizioni di controllo attivo acceso e spento, si è riscontrato che il sistema di controllo riduce il LLeq della componente principale (250 Hz), in media, di circa 18 dB rispetto al caso senza controllo; tale riduzione, come riportato in tabella 3, è massima in corrispondenza dei punti B e C (20.1 dB) e minima nel punto H (11.6 dB).

Analizzando i risultati riportati in tabella 2, si osserva che il livello equivalente lineare del rumore in uscita dalla marmitta elettronica è ridotto, in media, di 6.8 dB; tale riduzione varia da un minimo di 4.4 dB, misurato nel punto D, ad un massimo di 7.9 dB, rilevato nel punto H. La diminuzione ottenuta del livello equivalente ponderato A risulta significativamente minore rispetto a quella del livello lineare poiché il sistema di controllo agisce soprattutto sulle basse frequenze, che assumono scarsa rilevanza quando lo spettro del rumore è filtrato dalla curva di ponderazione A. Il LAeq è ridotto, in media, di 3.6 dBA; tale riduzione varia da un minimo di 1.5 dBA, misurato nel punto D, ad un massimo di 6.3 dBA, rilevato nel punto H.

Per frequenze superiori ai 1000 Hz, il DSP non riesce ad inseguire fedelmente le rapide variazioni del segnale d’ingresso; di conseguenza, ad
alte frequenze, l’algoritmo di controllo non produce risultati significativi; è comunque possibile ridurre facilmente l’entità del rumore prodotto attraverso metodi passivi, altamente efficaci per tali intervalli di frequenza.
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi
Conclusioni

La presente ricerca si propone la verifica della possibilità di impiego di tecniche di controllo attivo del rumore allo scarico di motori a combustione interna a due tempi.

Dall’analisi delle esperienze tecnico-scientifiche internazionali si sono potuti constatare il carattere innovativo e l’attualità dei propositi della ricerca sia perché applicazioni funzionali di controllo attivo del rumore su motori a due tempi a regime variabile non sono ancora state realizzate, vuoi perché le recenti normative internazionali prescrivono limiti alle emissioni acustiche di mezzi di trasporto sempre più stringenti.

Lo sviluppo di modelli di propagazione del rumore nei condotti di scarico dei motori ha consentito di individuare circuiti elettrici equivalenti con i quali è possibile calcolare la risposta acustica del condotto di scarico al variare dei parametri geometrici e di funzionamento del motore.

In seguito è stato effettuato il progetto meccanico, la verifica teorica delle prestazioni acustiche ed infine la realizzazione di un prototipo funzionale di marmitta elettronica applicata al condotto di scarico di un go-kart.

E’ stata individuata un’unità di controllo costituita da un DSP (Digital Signal Processing) e sono stati implementati algoritmi di calcolo in grado di generare il segnale di antirumore sulla base di un segnale di sincronismo fornito dalla candela del go-kart e di un segnale di errore opportunamente prelevato da un microfono.

L’unità di controllo e la marmitta elettronica sono stati collegati e
testati mediante l’impiego di un banco di prova. I risultati hanno mostrato che la marmitta elettronica produce un’attenuazione media di 12 dB inviando all’interno del condotto di scarico un’onda triangolare.

Si è osservato, inoltre, che alcuni algoritmi, particolarmente “potenti” in termini di calcolo, non sono attualmente applicabili per la limitata velocità di accelerazione del DSP impiegato.

La marmitta elettronica è stata applicata al condotto di scarico del go-kart allo scopo di testare il sistema di controllo su un motore a due tempi. Analizzando le prestazioni durante il normale funzionamento del go-kart stesso, non sono stati riscontrati risultati soddisfacenti, sia utilizzando come segnale di sincronismo quello della candela, sia prelevando il segnale di riferimento mediante un microfono posizionato a monte della marmitta elettronica. In quest’ultimo caso è stato ottenuto un segnale ben sincronizzato con il rumore da cancellare, ma non sono stati riscontrati risultati significativi, a causa della rapidità del fenomeno acustico e della sua elevata potenza. Tali fattori, allo stato attuale della tecnologia elettronica, non consentono un conveniente impiego di tecniche di controllo attivo per la riduzione del rumore allo scarico.

Sono stati, invece, ottenuti buoni risultati da una sperimentazione effettuata su un motore a due tempi di un comune motociclo, le cui emissioni acustiche sono caratterizzate da livelli di potenza inferiori a quelli del go-kart e da distribuzioni spettrali variabili più lentamente con il regime di rotazione. Infatti è risultato che l’applicazione del sistema di controllo attivo del rumore in un comune motociclo produce:
– un’attenuazione di 18 dBA, in media, per le componenti principali;
– una riduzione del LLeq, in media, pari a 6.8 dB;
– una riduzione del LAeq, in media, pari a 3.6 dBA;
– risultati poco significativi a frequenze superiori ai 1000 Hz.

Da tali risultati emerge che il sistema di controllo attivo del rumore, applicato al condotto di scarico di un comune motociclo, produce risultati significativi soprattutto sulle componenti principali e mostra un buon funzionamento alle basse frequenze, sulle quali non intervengono i metodi passivi tradizionali.
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi
Elenco dei simboli

\(f_t \) frequenza fondamentale del segnale di rumore del go-kart

\(L_1 \) induttanza associata al tubo iniziale del condotto di scarico del go-kart

\(l_1 \) lunghezza del tubo iniziale del condotto di scarico del go-kart

\(S_1 \) area della sezione del tubo iniziale del condotto di scarico del go-kart

\(L_2 \) induttanza associata alla marmitta del go-kart

\(l_2 \) lunghezza della marmitta del go-kart

\(S_2 \) area della sezione della marmitta del go-kart

\(C_1 \) capacità associata alla flangia finale della marmitta del go-kart

\(V_f \) volume compreso all’interno della flangia finale della marmitta del go-kart

\(L_3 \) induttanza associata al foro della flangia finale della marmitta del go-kart

\(D_f \) diametro del foro della flangia finale della marmitta del go-kart

\(R_2 \) resistenza associata al foro della flangia finale della marmitta del go-kart

\(S_f \) area della sezione del foro della flangia finale della marmitta del go-kart

\(h_f \) spessore del foro della flangia finale della marmitta del go-kart

\(L_4 \) induttanza associata al tubo finale della marmitta del go-kart

\(l_f \) lunghezza del tubo finale della marmitta del go-kart

\(V_i \) segnale di ingresso al circuito partitore utilizzato per la registrazione del segnale della candela del go-kart

\(V_u \) segnale di uscita del circuito partitore utilizzato per la registrazione del segnale della candela del go-kart

\(L_M \) induttanza associata al tubo interno della marmitta elettronica

\(l \) lunghezza equivalente del tubo interno della marmitta elettronica

\(S \) area della sezione del tubo interno della marmitta elettronica

\(M \) pendenza della tromba conica del banco di prova

\(W_c \) energia cinetica totale che caratterizza le particelle d’aria nella tromba conica

\(v \) velocità delle particelle d’aria nella tromba conica

\(q \) portata acustica delle particelle d’aria nella tromba conica
massa delle particelle d’aria nella tromba conica
ascissa della sezione minore della tromba conica
ascissa della sezione maggiore della tromba conica
area della sezione minore della tromba conica
area della sezione maggiore della tromba conica
induttanza associata alla tromba conica
induttanza associata alla cassa acustica dell’altoparlante del banco di prova
capacità associata alla cassa acustica dell’altoparlante del banco di prova
resistenza associata alla cassa acustica dell’altoparlante del banco di prova
induttanza del circuito equivalente parallelo RLC associato alla cassa acustica dell’altoparlante del banco di prova
capacità del circuito equivalente parallelo RLC associato alla cassa acustica dell’altoparlante del banco di prova
resistenza del circuito equivalente parallelo RLC associato alla cassa acustica dell’altoparlante del banco di prova
superficie del diaframma dell’altoparlante del banco di prova
induzione magnetica dovuta alla bobina mobile dell’altoparlante del banco di prova
lunghezza del filo conduttore della bobina mobile dell’altoparlante del banco di prova
induttanza associata alla tromba conica e al tubo interno della marmitta elettronica
lunghezza del tubo interno della marmitta elettronica
frequenza di risonanza della cassa acustica degli altoparlanti della marmitta elettronica
area della sezione del foro che collega la parte interna della cassa acustica degli altoparlanti con la camera di accoppiamento della marmitta elettronica
volume della cassa acustica degli altoparlanti della marmitta elettronica
lunghezza equivalente del foro che collega la parte interna della cassa acustica degli altoparlanti con la camera di accoppiamento della marmitta elettronica
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{asm}</td>
<td>induttanza associata alla cassa acustica degli altoparlanti della marmitta elettronica</td>
</tr>
<tr>
<td>C_{asm}</td>
<td>capacità associata alla cassa acustica degli altoparlanti della marmitta elettronica</td>
</tr>
<tr>
<td>R_{asm}</td>
<td>resistenza associata alla cassa acustica degli altoparlanti della marmitta elettronica</td>
</tr>
<tr>
<td>S_{Dm}</td>
<td>superficie del diaframma degli altoparlanti della marmitta elettronica</td>
</tr>
<tr>
<td>B_m</td>
<td>induzione magnetica dovuta alla bobina mobile degli altoparlanti della marmitta elettronica</td>
</tr>
<tr>
<td>l_b</td>
<td>lunghezza del filo conduttore della bobina mobile degli altoparlanti della marmitta elettronica</td>
</tr>
<tr>
<td>L_c</td>
<td>induttanza del circuito equivalente parallelo RLC associato alla cassa acustica degli altoparlanti della marmitta elettronica</td>
</tr>
<tr>
<td>C_c</td>
<td>capacità del circuito equivalente parallelo RLC associato alla cassa acustica degli altoparlanti della marmitta elettronica</td>
</tr>
<tr>
<td>R_c</td>
<td>resistenza del circuito equivalente parallelo RLC associato alla cassa acustica degli altoparlanti della marmitta elettronica</td>
</tr>
<tr>
<td>E_g</td>
<td>generatore di tensione associato alle onde acustiche emesse dagli altoparlanti della marmitta elettronica</td>
</tr>
<tr>
<td>R_g</td>
<td>resistenza interna degli altoparlanti della marmitta elettronica</td>
</tr>
<tr>
<td>R_e</td>
<td>resistenza elettrica della bobina mobile degli altoparlanti della marmitta elettronica</td>
</tr>
<tr>
<td>C_f</td>
<td>capacità associata al foro che collega la parte interna della cassa acustica degli altoparlanti con la camera di accoppiamento della marmitta elettronica</td>
</tr>
<tr>
<td>R_f</td>
<td>resistenza associata al foro che collega la parte interna della cassa acustica degli altoparlanti con la camera di accoppiamento della marmitta elettronica</td>
</tr>
<tr>
<td>L_f</td>
<td>induttanza associata al foro che collega la parte interna della cassa acustica degli altoparlanti con la camera di accoppiamento della marmitta elettronica</td>
</tr>
<tr>
<td>D_{fm}</td>
<td>diametro del foro che collega la parte interna della cassa acustica degli altoparlanti con la camera di accoppiamento della marmitta elettronica</td>
</tr>
</tbody>
</table>
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi

h_{fm} spessore del foro che collega la parte interna della cassa acustica degli altoparlanti con la camera di accoppiamento della marmitta elettronica

S_{fm} area della sezione del foro che collega la parte interna della cassa acustica degli altoparlanti con la camera di accoppiamento della marmitta elettronica

V_{fm} volume del foro che collega la parte interna della cassa acustica degli altoparlanti con la camera di accoppiamento della marmitta elettronica

P_{fm} pressione dell’aria interna al foro che collega la parte interna della cassa acustica degli altoparlanti con la camera di accoppiamento della marmitta elettronica

ρ densità dell’aria

μ viscosità dinamica dell’aria

γ rapporto tra il calore specifico a pressione costante e quello a volume costante dell’aria

P_{cm} pressione dell’aria interna alla camera di accoppiamento della marmitta elettronica

V_{cm} volume della camera di accoppiamento della marmitta elettronica

D_{cm} diametro della sezione che collega la camera di accoppiamento con il condotto esterno della marmitta elettronica

h_{cm} spessore della sezione che collega la camera di accoppiamento con il condotto esterno della marmitta elettronica

S_{cm} area della sezione che collega la camera di accoppiamento con il condotto esterno della marmitta elettronica

M_{1m} pendenza del tratto a sezione non costante del condotto esterno della marmitta elettronica

S_{2m} area della sezione terminale del condotto esterno della marmitta elettronica

l_{2m} lunghezza del tratto a sezione costante del condotto esterno della marmitta elettronica

C_{1} capacità associata alla camera di accoppiamento della marmitta elettronica

L_{1} induttanza associata alla sezione che collega la camera di accoppiamento con il condotto esterno della marmitta elettronica

L_{2} induttanza associata al tubo di uscita della marmitta elettronica
R1 resistenza associata alla sezione che collega la camera di accoppiamento con il condotto esterno della marmitta elettronica
I_m lunghezza del condotto interno della marmitta elettronica
S_0 area della sezione del condotto interno della marmitta elettronica
Lcsm induttanza associata al condotto interno della marmitta elettronica
w(n) vettore dei coefficienti del filtro adattivo al passo n
e(n) segnale di errore
c(n) vettore dei campioni del segnale di riferimento
μ parametro di adattamento
x dimensione dello step normalizzata
r fattore di controllo nell’aggiornamento dei coefficienti del filtro
h(n) risposta impulsiva del percorso secondario
c'(n) vettore dei campioni del segnale di riferimento filtrato dalla stima della funzione di trasferimento del percorso secondario
s_i(n) coefficienti della stima della funzione di trasferimento del percorso secondario
r(n) rumore bianco filtrato dai coefficienti s_i(n) durante la stima della funzione di trasferimento del percorso secondario
y(n) rumore bianco
e'(n) segnale di errore della stima della funzione di trasferimento del percorso secondario
P_y potenza del segnale y(n)
M ordine della funzione di trasferimento del percorso secondario
Z(n) matrice di correlazione inversa
k(n) vettore dei guadagni
s^{-1} fattore di memoria del filtro adattivo
I(n) matrice identità
L_{Aeq} livello equivalente ponderato A
L_{Leq} livello equivalente lineare
Realizzazione di dispositivi di controllo attivo del rumore allo scarico di motori a due tempi
Riferimenti bibliografici

[7] Scott D. Snyder, *Microprocessors for active control: bigger is not always enough*, Department of Mechanical Engineering, University of Adelaide, South Australia, Proceedings of ACTIVE 99

