WARNAKA G.E., BELTRAN C., FLEURY B.G., POOLE L.A., ROBEY R.V.,
WARNAKA M.E.
Active noise control of a large industrial fan ... 811

LARSEN C., LARSEN P.N.
Active control of radiation from plates by use of modal sensors 815

GOODMAN S.D., BURLAGE K.G., PEDERSEN D.G.
Performance of active noise control in large air ducts 821

COTANA F., ROSSI F., SANTARPIA L.
Noise control on air ducts : evolution of active systems and perspectives 825

ZIEGLER E.W., EGHTESADI Kh.
Frequency domain adaptive control algorithm for electronic muffler applications .. 829

FELLI M., BURATTI C., COTANA F.
An experimental apparatus to evaluate the performances of active noise control systems on glass plates .. 833

MASLOV V.L.
Active/passive noise control for ship system ducts 837

ACTIVE VIBRATION CONTROL

Session A3

ELLIOTT S.J., BRENNAN M.J., PINNINGTON R.J.
Feedback control of flexural waves on a beam ... 843

BRENNAN M.J., ELLIOTT S.J., PINNINGTON R.J.
Power absorption and minimization on Euler-Bernoulli beams 847

PASCAL J.-C., CARNIEL X., NEZAN S.
Active control of power input in a plate : feedforward and feedback methods .. 851

MICCOLI G., LECCE L.
Piezoceramic transducers vibration active control capability 855

HANSAKA M.
Preparation and properties of magnetic vibration-damper 859

SUBBARAO A.
Optimal controller design for a system with flexible modes 863

CONCILIO A., DEL GATTO F.S., VITIELLO P.
Aircraft structural elements vibration active control numerical simulation 867
NOISE CONTROL ON AIR DUCTS: EVOLUTION OF ACTIVE SYSTEMS AND PERSPECTIVES

F. COTANA*, F. ROSSI*, L. SANTARPIA**

*Università di Perugia, Istituto di Energetica, str. S. Lucia Canetola, 06125 Perugia, Italy
**Università "La Sapienza" Roma, Dipartimento di Fisica Tecnica, via Eudossiana 18, Roma, Italy

Abstract: An active noise control system on air ducts was recently proposed [1]. In this paper, two new systems are presented which being the evolution of the former, have higher performances. The first one is physically identical to the previously proposed system, but it employs another electronic control procedure, so that the noise reduction is considerably increased. The second system shows a really new shape, as it consists of a single loudspeaker which acts both as sensor and actuator. This second one would be less expensive and easier to install but, at the moment, its performances are less efficient than the two loudspeaker system. A maximum reduction of about 1.5 dB in on the total noise level has been measured. However, a theoretical reduction of about 3 dB has been proven, so that improvements of the system are expected which would make it considerably attractive.

AIM OF THE WORK

Studies on active noise control in air ducts have been going on for two years in the acoustic laboratory of the University of Perugia [1],[2], following up several researches which are reported in Literature [3],[4],[5]. A first control system was proposed in 1992 [1], which succeeded in controlling a fixed sinusoidal signal. A reduction of about 14dB was obtained, but it was limited to single wave generating sources, while no global effect could be measured when the source was noise. In the present paper, some evolutions of the system are described. The first one implies a modification of the electronic circuit used in [1] and the fan rotating speed, which is held under similar conditions with the commonly employed Air Conditioning Ducts. The second one implies a modification of the physical configuration used in the control: a single loudspeaker is used both as sensor and as actuator.

EVOLUTION OF THE CONTROL SYSTEM BASED ON TWO LOUDSPEAKERS (D.L.S.)

The experimental facility and the control system are constituted by the following elements:
a) an air duct, section 150 x 250 mm, length 4m: a grill outlet is set on one end of the duct, while a variable speed centrifugal fan is set on the other end;
b) two electrodynamic loudspeakers are employed: wooper type, frequency range 50-1000 Hz, diameter 160 mm;
c) a control system purposely built and supplied by 12 Volts battery. The circuit amplifies and regulates the signal up to an output power of 20 W;
d) a variable speed centrifugal fan with the following features: maximum flow-rate 800 m³/h; power of the electric driving motor 0.2 kW; continuously variable speed in the range 300-900 r.p.m.

The elements c) and d) are the real innovations in the system described in [1]. The air velocity inside the duct is maintained in the range of 0.75-3.0 m/s, which is the usually used range in air conditioning ducts. The experimental results are reported in table 1. It may be observed that an important reduction of the fan noise is obtained which varies in the range of 4-7 dB and depends on the speed of the fan.

THEORY OF THE SINGLE LOUDSPEAKER SYSTEM (S.L.S.)

Statement of the problem: The two loudspeaker systems may cause instability problems because the control noise generated by the actuator, influences the sensor and auto-oscillating phenomena might arise. So a new system has been studied which utilizes only one loudspeaker, both as sensor and actuator. A wooper type loudspeaker is used, which can reduce noise in the 50-300 Hz range, where porous absorbent materials have no practical effect.

Mathematical model: Hypotheses. The acoustic pressure P(t) produces a force on the membrane surface "A", which is given by:

\[F_p(t) = P(t) \cdot A \] \hspace{2cm} (1)

other forces act over the membrane, i. e.:

\[F_e(x) = K \cdot x \] \hspace{2cm} (2)

\[F_i(t) = m \cdot a(t) \] \hspace{2cm} (3)
\[F_m(t) = B l i(t) \]
\[e(t) = B l v(t) \]

where \(i = 0 \), \(F_m = 0 \) and the loudspeaker becomes a simple microphone. Then the bobine attached to the membrane moves in the magnetic field inside the loudspeaker and generates a voltage proportional to the speed:
\[e(t) = B l v(t) \]

The loudspeaker operates alternatively both as sensor and actuator: during very short periods, the mechanical work caused by the acoustic pressure is absorbed by the electronic control system. A mathematical model has been developed according to the following hypotheses:

1. a) the membrane is rigid and it moves all in phase;
2. b) the acoustic pressure due to the noise is uniform all along the membrane surface;
3. c) very short periods are considered (\(t_2-t_0 = 60 \times 10^{-9} \text{ s} \)), during which the acoustic pressure may be considered constant;
4. d) each interval is divided into two parts, \((t_1-t_0) \) and \((t_2-t_1) \);
5. e) during the time \((t_1-t_0) \) no current flows in the coil and the membrane moves under the action of the forces \(F_2, F_e, F_i \);
6. f) during the time \((t_2-t_1) \) the force \(F_m \) arises due to the electric current in the coil, and this force reduces until it stops;
7. g) the elastic force \(F_e \) is directed towards the neutral position and is proportional to the distance from it.

Hypothesis a) is justified by the high rigidity of the membrane, because of its conic shape. Hypotheses b) and c) are applicable because of the low range of frequency being considered (40 - 300 Hz). Hypotheses d) and f) can be actuated by an adequate electronic circuit. Finally, hypothesis g) can be actuated by a finalized construction of the membrane.

Development of the Mathematical Model. The equation of the membrane motion is:
\[m \cdot \frac{d^2x}{dt^2} = K \cdot x - P \cdot A = 0 \]

The sign + is valid when the distance \(x \) from the equilibrium position increases.

For \(t = 0, x = 0 \) and \(dx/dt = 0 \), the distance \(s_1 \) and the velocity \(v_1 \) at the time \(t_1 \) can be calculated as follows:
\[s_1 = \frac{P \cdot A}{K} \left[1 - \cos\left((t_1-t_0) \cdot \frac{\sqrt{x}}{m} \right) \right] \]
\[v_1 = \frac{P \cdot A}{K} \cdot \frac{\sqrt{x}}{m} \cdot \sin\left((t_1-t_0) \cdot \frac{\sqrt{x}}{m} \right) \]

The output loudspeaker voltage is:
\[e_1 = B l v_1 \]

During the period \((t_2-t_1) \), the membrane is decelerated by a force generated by a current \(i_1 \) through the coil chosen by means of the electronic system proportional to \(e_1 \), so that:
\[i_1 = e_1 A_v / Z_a \]

The force \(F_m \) in the period \((t_2-t_1) \) is given by:
\[F_m = B l i_1 \]

Therefore the membrane motion follows the equation:
\[m \cdot \frac{d^2x}{dt^2} = K \cdot x + B \cdot l \cdot i_1 - P \cdot A = 0 \]

By imposing that the membrane reaches the equilibrium position at the time \(t_2 \), from the condition \(dx/dt = 0 \), the corresponding value of \(A_v \) can be calculated:
\[A_v = \frac{\sqrt{x}}{m} \cdot \frac{Z_a \cdot m}{B^2 \cdot l^2 \cdot \sin:\left((t_1-t_0) \cdot \frac{\sqrt{x}}{m} \right) \cdot \sin:\left((t_2-t_1) \cdot \frac{\sqrt{x}}{m} \right)} \]

Eq. (13) shows that, if the intervals \((t_1-t_0) \) and \((t_2-t_1) \) are fixed, \(A_v \) depends only on the loudspeaker characteristics.

THE S.L.S. SYSTEM: ENERGETIC ANALYSIS

When the membrane is moving away from the equilibrium position, the energy balance is given by:
\[dE_a - dE_e = dE_c \]\nfor \(t_0 < t < t_2 \)
\[dE_c = dE_m \]
for \(t_1 < t < t_2 \)
on the other hand, when the membrane is approaching the equilibrium position, the energy balance expressed by the equation (14) may be rewritten as follows:
\[dE_a + dE_e = dE_c \]\nfor \(t_0 < t < t_2 \)

In the first case, only a limited fraction of the incident energy is absorbed, because an important quantity is accumulated in the form of elastic position energy of the membrane. On the contrary, while the membrane is approaching the equilibrium position, the electronic system absorbs the kinetic energy relative to the membrane motion, which also includes the energy accumulated in the elastic form during the precedent phase. The absorbed energy is dissipated within the devices of the electronic control
system. The incident energy is partially reflected by the membrane, depending on the wavelength, the loudspeaker properties and the incident angle[6]. In the present event, the reflected energy has been estimated in the range of 15-30% of the incident energy. Calculations are omitted for brevity.

THE S.L.S. ELECTRONIC CONTROL SYSTEM

The block diagram of the electronic control system is reported in fig.1, made up of the following components: a) First Stage Amplifier A1. It amplifies the electric signal from the loudspeaker, so that it may be furtherly converted. b) Sample and Hold. This picks up the electric signal from the loudspeaker at the time t1 and stores it during the entire following interval (t2-t1). c) Timing Circuit. It is made up of one oscillator and two monostables and it achieves the desired timings. Besides it generates the impulses which control the length of the intervals t1-t0, t2-t1, t3-t0 and the sample at the instant t1.

d) Second Stage Amplifier A2. This is a power amplifier to elevate the control signal up to the values high enough to drive the loudspeaker; the total amplification is equal to Av, given by Eq. (13).

e) FET Switch. An electronic switch which connects A2 with the loudspeaker used as actuator during (t2-t1); whereas, during (t1-t0) it insulates the amplifier output from the loudspeaker, which then acts as sensor and generates the voltage e(t) to the preamplifier inlet. f) Filter PB. It cuts off a great part of the high frequency electrical signals which are generated by the master electronic system. The oscillator frequency is set equal to 16,666 KHz, so that the electrical commutation does not produce audible noise and hypothesis 3.2.c) is verified.

THE S.L.S. SYSTEM: EXPERIMENTAL RESULTS

The experimental facility is described in Chapter 2; this time only one loudspeaker is present, instead of two. The noise source is a variable speed centrifugal fan: in fig.2 the noise wave shape is reported along with the control signal. The experimental results are reported in tab.1 and tab.2. They include data on total noise reduction at different operating conditions. The maximum theoretical noise reduction is attaining when the absorption coefficient of the loudspeaker surface is equal to unity. This has been measured in the following way: the loudspeaker is moved away and the resulting window opened in the ducts, is connected with a space acoustically independent from the room where the measurements are performed. The results are shown in column 7 of table 1. The maximum reduction is variable with the noise level and it varies in the range 2.6-3 dBlIn. The actual reduction is variable as well as varying in the range 0.5-1.5 dBlIn

CONCLUDING REMARKS

Two new active control systems have been proposed for noise reduction inside air conditioning ducts. The first one, which utilizes two loudspeakers, one as sensor and the other as actuator, is a true evolution of a previous system set up in our laboratory [2]. By applying some modifications an improvement of performances has been obtained on electronic control system. The total noise reduction reaches 7 dBlIn. A second arrangement of the noise control system is also proposed for the first time which utilizes only one loudspeaker used both as sensor and actuator; this would be cheaper and easier to install. A theoretical outline of the system is proposed and a set of experimental results is shown. The total noise reduction reaches 1.5 dBlIn. The obtained results encourage us to go ahead in the research: the theoretically attainable noise reduction is considerably higher, so we think that by improving the electronic control system, it will be possible to increase the present performances of the system.

TABLE: Global Noise Measurements and active control noise systems comparison

<table>
<thead>
<tr>
<th>V (m/s)</th>
<th>Q (m³/h)</th>
<th>Control OFF</th>
<th>Control ON</th>
<th>D.L.S.</th>
<th>S.L.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Measured noise level (dBlIn)</td>
<td>Measured noise level (dBlIn)</td>
<td>Measured reduction (dBlIn)</td>
<td>Measured noise level (dBlIn)</td>
</tr>
<tr>
<td>3.0</td>
<td>400</td>
<td>86.0</td>
<td>79.7</td>
<td>6.3</td>
<td>85.5</td>
</tr>
<tr>
<td>2.2</td>
<td>300</td>
<td>77.5</td>
<td>70.4</td>
<td>7.1</td>
<td>76.6</td>
</tr>
<tr>
<td>1.85</td>
<td>250</td>
<td>75.6</td>
<td>70.0</td>
<td>5.6</td>
<td>74.6</td>
</tr>
<tr>
<td>1.48</td>
<td>200</td>
<td>72.4</td>
<td>67.0</td>
<td>5.4</td>
<td>71.0</td>
</tr>
<tr>
<td>1.10</td>
<td>150</td>
<td>69.9</td>
<td>65.6</td>
<td>4.3</td>
<td>68.4</td>
</tr>
<tr>
<td>0.75</td>
<td>100</td>
<td>69.6</td>
<td>65.4</td>
<td>4.2</td>
<td>68.5</td>
</tr>
</tbody>
</table>
FIG. 1: Electrical block diagram of the S.L.S.

SYMBOLS

\[a = \text{acceleration (m/s}^2\text{)} \]
\[A = \text{effective membrane area (m}^2\text{)} \]
\[A_v = \text{voltage amplification coefficient} \]
\[B = \text{magnetic induction (Wb/m}^2\text{)} \]
\[E_a = \text{acoustic energy (J)} \]
\[E_c = \text{membrane kinematic energy (J)} \]
\[E_e = \text{elastic potential energy (J)} \]
\[E_m = \text{absorbed energy (J)} \]
\[e = \text{loudspeaker output voltage (V)} \]
\[F = \text{force (N)} \]
\[F_e = \text{elastic force (N)} \]
\[F_i = \text{inertial force (N)} \]
\[F_m = \text{force due to magnetic field (N)} \]
\[F_p = \text{force relative to acoustical pressure (N)} \]
\[i = \text{current (A)} \]
\[K = \text{elastic constant (N/m)} \]
\[l = \text{loudspeaker coil length (m)} \]
\[m = \text{mobile mass: membrane and coil, (Kg)} \]
\[P = \text{acoustic pressure (Pa)} \]
\[Q = \text{flow rate (m}^3\text{/h)} \]
\[t = \text{time (s)} \]
\[v = \text{velocity (m/s)} \]
\[x = \text{displacement (m)} \]
\[Z_s = \text{input loudspeaker impedance (Ω)} \]

LITERATURE
